
APPM 2350—Final Exam
Saturday, Dec 11th 7:30am-10am 2021

Show all your work and simplify your answers. Answers with no justification will receive no points. You are
allowed one 8.5×11-in page of notes (TWO sided). You may NOT use a calculator, smartphone, smartwatch,
the Internet or any other electronic device.

Problem 1 (35 points)
Use the portion of the level curve graph of g(x, y) shown below to answer the following questions. You can
assume g(x, y) is a continuous function with continuous partial derivatives.

Do NOT try to find an expression for the actual function g(x, y) (no credit will be given). Use ONLY the
information provided on the level curve plot to answer the following questions:

(a) Estimate gy(9, 16). For credit, show work justifying your estimate.
(b) Estimate the derivative of g(x, y) at the point (9, 16) in the direction−3i+4j. For credit, show work

justifying/explaining your estimate.

(c) Estimate n, a unit vector that is normal to the surface z = g(x, y) at the point (9, 16, 80). For credit,
show work justifying your estimate.

(d) Based on the level curves shown, are there any points in the domain where∇g =
−→
0 ? If not, explain

why. If so, give the value of g(x, y) at the point(s).

(e) Let C be the level curve defined by g(x, y) = 110 and oriented counter-clockwise. Determine
whether the work done by G = ∇g around C is positive, zero or negative. Justify your answer.

(f) Let C be the level curve defined by g(x, y) = 110. Determine whether the total outward flux of
G = ∇g through C is positive, zero or negative. Justify your answer.

(g) Evaluate
´
C1
∇g · dr, where C1 is the straight line path from (x, y) = (21, 12) to (x, y) = (9, 20).

SOLUTION:

(a) gy ≈ ∆g
∆y

There are multiple acceptable answers, as long as you justify your reasoning.
Option 1: Using a forward difference at the point (9, 16):

gy(9, 16) ≈ g(9, 20)− g(9, 16)

20− 16
=

70− 80

4
= −5

2

Option 2: Based on the level curves shown we can approximate g(9, 12) ≈ 85 (or any other
number between 85 and 90) and use a centered difference:

gy(9, 16) ≈ g(9, 20)− g(9, 12)

20− 12
=

70− 85

8
= −15

8



(b)

Dug =
dg

ds
= ∇g(9, 16) · u where u =

−3i + 4j√
32 + 42

= −3

5
i +

4

5
j

There are multiple acceptable ways to approximate this, as long as you justify your reasoning.
Option 1: Approximate∇g(9, 16) using forward differences:
From part (a) we have gy ≈ −5

2

Using a forward difference at the point (9, 16):

gx(9, 16) ≈ g(12, 16)− g(9, 16)

12− 9
=

90− 80

3
=

10

3

Thus using forward differences,∇g(9, 16) ≈ 〈10
3 ,−

5
2〉

Thus

Dug = ∇g(9, 16) · u ≈ 〈10

3
,−5

2
〉 · 〈−3

5
,
4

5
〉 = −2− 2 = −4

Option 2: Approximate dg
ds in the direction u directly on the level curve plot using forward differ-

ences. Starting at the point (9, 16) and moving in the direction 〈−3, 4〉 (i.e. a distance of 5 diagonally
across one of the boxes) we see:

dg

ds
≈ ∆g

∆s
=
g(6, 20)− g(9, 16)

5
=

50− 80

5
= −6

Note that a more accurate forward approximation would use just the closest level curve in the
direction 〈−3, 4〉, i.e.:

dg

ds
≈ ∆g

∆s
=

70− 80

2
= −5

Other approximations (including centered differences of the above calculations) are also accept-
able as long as you show work justifying your steps.

(c) Let
f(x, y, z) = g(x, y)− z

The surface z = g(x, y) is one level surface of f(x, y, z), thus∇f is normal to this surface.

∇f(x, y, z) = 〈gx(x, y), gy(x, y),−1〉
Thus

n =
∇f(9, 16, 80)

||∇f(9, 16, 80)||
is normal to the graph of the surface at the point (9, 16, 80).

Using our estimates from part (a) and (b):

∇f(9, 16, 80) = 〈gx(9, 16), gy(9, 16),−1〉 ≈ 〈10

3
,−5

2
,−1〉

Thus

n ≈
〈10

3 ,−
5
2 ,−1〉√

(10/3)2 + (−5/2)2 + 1

(d) Yes, there is a critical point when g(x,y) =113
(e) Since∇g is a conservative field, the work done around any closed curve is zero. Since g(x, y) = 110

is a closed curve, the work done is zero .
(f) The total flux is

¸
C ∇g · n ds where n is the outward pointing unit normal. Since ∇g points in

the direction of greatest increase, for this function it points inward to the level curves and thus
n = − ∇g

||∇g|| is the outward unit normal to the level curve g(x, y) = 110. Thus the total flux is

˛
C
∇g · n ds =

˛
C
∇g ·

(
−∇g
||∇g||

)
ds = −

˛
C
||∇g|| ds < 0



(g) We can use the Fundamental Theorem of Line Integrals:´
C ∇g · dr = g(9, 20)− g(21, 12) = 70− 110 = −40

�
Problem 2 (30 points)
The following questions are not related:

(a) Given

F = z i + x j− 3ey
2

arctan(z2)k

Find the outward flux through the surface that consists of the part of the cylinder x2 + y2 = 16 that
lies in the first octant between z = 0 and z = 5. (By outward we mean oriented away from the
z-axis. Note that this surface is not closed).

(b) Evaluate ˆ

C

(2x cos y + 3) dx− (x2 sin y + 2y) dy

where C is the path r(t) = cos3 ti + sin3 tj, 0 ≤ t ≤ π/2.

SOLUTION:

(a) We need to compute
¨
S
F · ndS, a standard vector surface (flux) integral.

g(x, y, z) = x2 + y2 =⇒ ∇g = 〈2x, 2y, 0〉 (use positive gradient for outward normal)

F · ∇g = 〈z, x,−3ey
2

arctan(z2)〉 · 〈2x, 2y, 0〉 = 2x(y + z)

project onto the yz-plane =⇒ p = i, |∇g · p| = |2x| = 2x since x > 0 and

R =
{

(x, y, z) ∈ R3
∣∣∣x = 0, 0 ≤ y ≤ 4, 0 ≤ z ≤ 5

}
¨
S
F · ndS =

¨
R
F · ∇g
|∇g · p|

dA =

ˆ 5

0

ˆ 4

0
(y + z) dy dz = 90

Note: Projecting onto the xz-plane results in an integrand of
x(y + z)

y
which, using the surface to

eliminate y, gives
ˆ 5

0

ˆ 4

0

(
xz√

16− x2
+ x

)
dx dz = 90

(b) Direct integration is not possible as the integrand will contain terms like cos(sin3 t). Noting that the

integral can be written alternatively as
ˆ
C
F ·dr with F =

〈
2x cos y + 3,−x2 sin y − 2y

〉
= 〈P,Q〉,

we check to see if F is conservative.

∂Q

∂x
− ∂P

∂y
= −2x sin y − (−2x sin y) = 0

Since F is defined throughout R2, which is simply connected, and ∇ × F = 0, F is conservative.
This means that the integral is path independent and also that a potential function, f , exists such that
F = ∇f . This provides two options:

Option 1 - find the potential and use the Fundamental Theorem for Line Integrals



∂f

∂x
= 2x cos y + 3 =⇒ f(x, y) = x2 cos y + 3x+ g(y)

∂f

∂y
= −x2 sin y + g′(y) = −x sin y − 2y =⇒ g′(y) = −2y =⇒ g(y) = −y2 + c

f(x, y) = x2 cos y + 3x− y2 + c

Then we have

ˆ
C
(2x cos y + 3) dx− (x2 sin y + 2y) dy =

ˆ
C
F · dr =

ˆ
C
∇f · dr

= f(0, 1)− f(1, 0) = (−1 + c)− (4 + c) = −5

Option 2 - integrate along another path

To avoid more complex integrations which would occur if using the line segment between (1, 0) and
(0, 1), we choose the path (1, 0) → (0, 0) → (0, 1) consisting of two line segments. For the part
along the x-axis we have x = 1 − t, y = 0, 0 ≤ t ≤ 1 with dx = −dt and dy = 0 and for the part
along the y-axis we use x = 0, y = t, 0 ≤ t ≤ 1 with dx = 0 and dy = dt. Then

ˆ
C
(2x cos y + 3) dx− (x2 sin y + 2y) dy =

ˆ 1

0
[2(1− t) + 3] (−dt) +

ˆ 1

0
−2tdt

=

ˆ 1

0
(−5 + 2t) dt+

ˆ 1

0
−2tdt =

ˆ 1

0
−5 dt = −5

�
Problem 3 (25 points)
A metal plate lies in the xy-plane in the region 0 ≤ x ≤ 4− y2

(i.e the region in quadrants I and IV bounded by the y-axis and the curve x = 4− y2).

(a) Sketch and shade the region where the plate lies. Label any intercepts.
(b) Find the work done by

G =

〈
yx2 − 3y + ecos(x),

x3

3
− arctan y

〉
counterclockwise once around the boundary of the plate.

(c) Let the temperature at any point on the plate be given by T (x, y) = y2 +x2−x. Find the location(s)
of the hottest and coldest points on the plate. Show work fully justifying your answer.

SOLUTION:

(a) The region looks like this:



(b) The boundary curve C of the region is piecewise smooth and closed, and the vector field G has con-
tinuous first partial derivatives, so we should use Green’s Theorem. With G = 〈P (x, y), Q(x, y)〉,‰

C
G · dr =

¨
R

(
∂Q

∂x
− ∂P

∂y

)
dA

=

¨
R

[x2 − (x2 − 3)] dA

=

¨
R

3 dA

= 3

ˆ 2

−2

ˆ 4−y2

0
1 dx dy

= 3

ˆ 2

−2

[
x
]4−y2

0
dy

= 3

ˆ 2

−2
(4− y2) dy

= 3

[
4y − y3

3

]2

−2

= 3

{[
4(2)− (2)3

3

]
−
[
4(−2)− (−2)3

3

]}
= 3

[(
8− 8

3

)
−
(
−8 +

8

3

)]
= 24− 8 + 24− 8

= 32

(c) By the Extreme Value Theorem there must exist absolute max and min temperatures on the plate.
We have to optimize the temperature function T (x, y) = y2 + x2 − x inside the plate and on the
boundary of the plate.

For full credit you must find all possible max/min on the interior and boundary, and compare the
temperatures at each point to find the absolute max and min.

To optimize T (x, y) on the inside of the plate, note that ∇T (x, y) = 〈2x − 1, 2y〉, which equals
〈0, 0〉 when

2x− 1 = 0 =⇒ x =
1

2
and 2y = 0 =⇒ y = 0

Since ∇T (x, y) always exists (T is a polynomial in two variables),
(

1
2 , 0
)

is the only critical point
of T (x, y), which is in the interior of the metal plate. We will evaluate T (x, y) at this point after we
have found all points of interest.

To optimize T (x, y) on the boundary of the plate, we break the curve C into two pieces, say C1

is the line segment on the y-axis given by x = 0 and −2 ≤ y ≤ 2, and C2 is the curve x = 4 − y2

for −2 ≤ y ≤ 2.
On C1, since x = 0 we study the function T1(y) = T (0, y) = y2 on the interval [−2, 2]. Since

T ′1(y) = 2y which equals zero when y = 0, we have three points of interest (when y = 0 and
including the endpoints y = ±2) to consider later:

(0, 0) (0, 2) (0,−2)

To optimize T (x, y) on the curve C2 there are two methods we could use:
Method 1: just like on C1, since x = 4− y2 on C2 we study the function

T2(y) = T (4− y2, y) = y2 + (4− y2)2 − (4− y2) = y2 + 16− 8y2 + y4 − 4 + y2 = y4 − 6y2 + 12

for −2 ≤ y ≤ 2.



But

T ′2(y) = 4y3 − 12y = 4y(y2 − 3)

which equals zero when y = 0,±
√

3. This gives us three more points of interest to consider:

(4, 0) (1,
√

3) (1,−
√

3)

(note that the ‘endpoint’ y = ±2 are the same as on C1)
Method 2: we could use Lagrange multipliers. Let g(x, y) = x + y2. Then the curve C2 is the

level curve g(x, y) = 4. We want to solve the system

∇T (x, y) = λ∇g(x, y) and g(x, y) = 4

or

〈2x− 1, 2y〉 = λ〈1, 2y〉 and x = 4− y2

or

2x− 1 = λ

2y = 2λy

x = 4− y2

The second equation tells us that

2y − 2λy = 0 or 2y(1− λ) = 0,

so either y = 0 or λ = 1. If y = 0, the third equation gives x = 4, so (4, 0) is a point of interest.
If λ = 1, then the first equation says that 2x − 1 = 1 or x = 1. The third equation then gives

y = ±
√

3. We get the two points of interest (1,±
√

3).
To finish the problem, we evaluate T (x, y) at all of the points of interest:

T (1
2 , 0) = −1

4

T (0, 0) = 0

T (0,−2) = 4

T (0, 2) = 4

T (4, 0) = 12

T (1,
√

3) = 3

T (1,−
√

3) = 3

The hottest point on the plate is therefore(4,0) and the coldest point is ( 1
2 , 0).

For fun, this is what the temperature distribution on the inside and on the boundary of the plate
looks like:



�
Problem 4 (35 points)
The integral

2
√

2ˆ

0

√
8−y2ˆ

−
√

8−y2

√
16−x2−y2ˆ
√
x2+y2

dz dx dy

represents the volume of a 3D region, E .

(a) Sketch and shade a 2D cross section of the object in the rz-plane. Label the (r, z) coordinates on all
corners of the cross section.

(b) Sketch and shade the projection of the object onto the xy-plane. Label any intercepts.
(c) Set up but DO NOT EVALUATE, equivalent integral(s) to find the volume of the object using:

(i) Cylindrical coordinates in the order dz dr dθ
(ii) Spherical coordinates in the order dρ dφ dθ

(d) Calculate the total outward flux of

F = (xz2 + tan(y2z))i + (yx2 − xecos(z))j + (zy2)k

across the entire surface of E .

SOLUTION:

The surface looks like the figure below.

2 4 y

4

z

-4-224x

4

z

-4

-2

2

x

2 4 y

-4
-2

2
4x

2
4 y

4

z

(a)

r

z

(0, 0)

(2
√

2, 2
√

2)

(0, 4)

(b)



x

y

(−2
√

2, 0) (2
√

2, 0)

(0, 2
√

2)

(c)

(i)
ˆ π

0

ˆ 2
√

2

0

ˆ √16−r2

r
rdzdrdθ

(ii)
ˆ π

0

ˆ π
4

0

ˆ 4

0
ρ2 sin(φ)dρdφdθ

(d) Calculating

ˆ
V

(∇ · F ) dV =

ˆ
V

(
z2 + x2 + y2

)
dV =

ˆ π

0

ˆ π
4

0

ˆ 4

0

(
ρ2
)
ρ2 sin(φ)dρdφdθ

=

(ˆ π

0
dθ

)(ˆ π
4

0
sin(φ)dφ

)(ˆ 4

0
ρ4dρ

)
=

(
θ

∣∣∣∣π
0

)(
− cos(φ)

∣∣∣∣π4
0

)(
ρ5

5

∣∣∣∣4
0

)

=π
(

cos (0)− cos
(π

4

)) 45

5
= π

(
1−
√

2

2

)
1024

5
,

by the Divergence Theorem, the outward flux is

"
F · n dS =

ˆ
V

(∇ · F ) dV = π

(
1−
√

2

2

)
1024

5
.

�
Problem 5 (25 points)
Let C be the path parameterized by

r(t) = 〈2 cos t, 2 sin t, 3− cos t〉, 0 ≤ t ≤ 2π

.

(a) C lies in a plane. Find the equation of that plane.
(b) Let

F(x, y, z) =
〈
ex

2
+ 2z2, sinh(y2), cos(z2) + zy

〉
Find the circulation of F(x, y, z) around C.

SOLUTION:

(a) To find the equation of the plane we need a point and a normal vector.
One possible point : t = 0 =⇒ (x, y, z) = (2, 0, 2).
To find the normal vector:
Option 1: Find 3 points on the curve, create 2 vectors between them and find their cross product:
P1: t = 0 =⇒ (x, y, z) = (2, 0, 2).
P2: t = π/2 =⇒ (x, y, z) = (0, 2, 3).
P3: t = π =⇒ (x, y, z) = (−2, 0, 4).



P1P2 × P1P3 =

∣∣∣∣∣∣
î ĵ k̂

−2 2 1

−4 0 2

∣∣∣∣∣∣ = 〈4, 0, 8〉

Thus the plane is 4(x− 2) + 0(y − 0) + 8(z − 2) = 0

=⇒ x+ 2z = 6

Option 2:
The normal vector to the osculating plane (binormal vector of the curve) will point in the direction of

r′(t)× r′′(t): ∣∣∣∣∣∣
î ĵ k̂

−2 sin(t) 2 cos(t) sin(t)

−2 cos(t) −2 sin(t) cos(t)

∣∣∣∣∣∣
=
〈
2 cos2(t) + 2 sin2(t), 2 sin(t) cos(t)− 2 sin(t) cos(t), 4 sin2(t) + 4 cos(t)

〉
= 〈2, 0, 4〉
Thus, the osculating plane to the curve C is constant i.e. C lies in a plane which has a normal vector that
points in the direction of 〈2, 0, 4〉.

Thus the plane is 2(x− 2) + 0(y − 0) + 4(z − 2) = 0

=⇒ x+ 2z = 6

(b) Note that integrating F(r(t)) · r′(t) dt would be impossible. We can start by checking to see if this vector
field is conservative:

∇× F =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

ex
2

+ 2z2 sinh(y2) cos(z2) + zy

∣∣∣∣∣∣∣ = 〈z, 4z, 0〉

Thus F is not conservative.
However, since C is a closed curve, Stokes’ theorem tells us thatˆ

C
F · dr =

ˆ ˆ
S

(∇× F) · n̂ dS

If we model the plane by the equation x+ 2z = d it becomes a level surface of the function g(x, y, z) =

x+ 2z.

Thus ∇g(x, y, z) = 〈1, 0, 2〉. Checking orientation, this follows the right-hand rule with the direction of
C.

Projecting onto the xy−plane we get:

(∇× F) · n̂ dS =
(∇× F) · ∇g
|∇g · k̂|

dA =
〈z, 4z, 0〉 · 〈1, 0, 2〉

2
dxdy =

1

2
z

Since on the plane z = 3− x
2 , we can convert the integrand to be in terms of xy:

1

2
z =

1

2
(3− x

2
)

The region of integration on the xy-plane is given by the x and y coordinates of C. Since x = 2 cos t and
y = sin t, this traces out a circle of radius 2 centered at the origin in the xy-plane.

Thus, ˆ
C
F · dr =

ˆ ˆ
S

(∇× F) · n̂ dS =

¨
R

(
3

2
− x

4
) dA



=

ˆ 2π

0

ˆ 2

0

(
3r

2
− 1

4
r2 cos θ

)
dr dθ

=

ˆ 2π

0
(3− 2

3
cos θ) dθ = 3(2π)− 0 = 6π

�

End Of Exam


