APPM 2350—Final Exam

Saturday, Dec 11th 7:30am-10am 2021
Show all your work and simplify your answers. Answers with no justification will receive no points. You are allowed one 8.5×11-in page of notes (TWO sided). You may NOT use a calculator, smartphone, smartwatch, the Internet or any other electronic device.

Problem 1 (35 points)
Use the portion of the level curve graph of $g(x, y)$ shown below to answer the following questions. You can assume $g(x, y)$ is a continuous function with continuous partial derivatives.

Do NOT try to find an expression for the actual function $g(x, y)$ (no credit will be given). Use ONLY the information provided on the level curve plot to answer the following questions:
(a) Estimate $g_{y}(9,16)$. For credit, show work justifying your estimate.
(b) Estimate the derivative of $g(x, y)$ at the point $(9,16)$ in the direction $-3 \mathbf{i}+4 \mathbf{j}$. For credit, show work justifying/explaining your estimate.
(c) Estimate \mathbf{n}, a unit vector that is normal to the surface $z=g(x, y)$ at the point $(9,16,80)$. For credit, show work justifying your estimate.
(d) Based on the level curves shown, are there any points in the domain where $\nabla g=\overrightarrow{0}$? If not, explain why. If so, give the value of $g(x, y)$ at the point(s).
(e) Let \mathcal{C} be the level curve defined by $g(x, y)=110$ and oriented counter-clockwise. Determine whether the work done by $\mathbf{G}=\nabla g$ around \mathcal{C} is positive, zero or negative. Justify your answer.
(f) Let \mathcal{C} be the level curve defined by $g(x, y)=110$. Determine whether the total outward flux of $\mathbf{G}=\nabla g$ through \mathcal{C} is positive, zero or negative. Justify your answer.
(g) Evaluate $\int_{\mathcal{C}_{1}} \nabla g \cdot \mathbf{d r}, \quad$ where \mathcal{C}_{1} is the straight line path from $(x, y)=(21,12)$ to $(x, y)=(9,20)$.

Solution:

(a) $g_{y} \approx \frac{\Delta g}{\Delta y}$

There are multiple acceptable answers, as long as you justify your reasoning.
Option 1: Using a forward difference at the point $(9,16)$:

$$
g_{y}(9,16) \approx \frac{g(9,20)-g(9,16)}{20-16}=\frac{70-80}{4}=-\frac{5}{2}
$$

Option 2: Based on the level curves shown we can approximate $g(9,12) \approx 85$ (or any other number between 85 and 90) and use a centered difference:

$$
g_{y}(9,16) \approx \frac{g(9,20)-g(9,12)}{20-12}=\frac{70-85}{8}=-\frac{15}{8}
$$

(b)

$$
D_{u} g=\frac{d g}{d s}=\nabla g(9,16) \cdot \mathbf{u} \text { where } u=\frac{-3 \mathbf{i}+4 \mathbf{j}}{\sqrt{3^{2}+4^{2}}}=-\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{j}
$$

There are multiple acceptable ways to approximate this, as long as you justify your reasoning.
Option 1: Approximate $\nabla g(9,16)$ using forward differences:
From part (a) we have $g_{y} \approx-\frac{5}{2}$
Using a forward difference at the point $(9,16)$:

$$
g_{x}(9,16) \approx \frac{g(12,16)-g(9,16)}{12-9}=\frac{90-80}{3}=\frac{10}{3}
$$

Thus using forward differences, $\nabla g(9,16) \approx\left\langle\frac{10}{3},-\frac{5}{2}\right\rangle$
Thus

$$
D_{u} g=\nabla g(9,16) \cdot \mathbf{u} \approx\left\langle\frac{10}{3},-\frac{5}{2}\right\rangle \cdot\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle=-2-2=-4
$$

Option 2: Approximate $\frac{d g}{d s}$ in the direction \mathbf{u} directly on the level curve plot using forward differences. Starting at the point $(9,16)$ and moving in the direction $\langle-3,4\rangle$ (i.e. a distance of 5 diagonally across one of the boxes) we see:

$$
\frac{d g}{d s} \approx \frac{\Delta g}{\Delta s}=\frac{g(6,20)-g(9,16)}{5}=\frac{50-80}{5}=-6
$$

Note that a more accurate forward approximation would use just the closest level curve in the direction $\langle-3,4\rangle$, i.e.:

$$
\frac{d g}{d s} \approx \frac{\Delta g}{\Delta s}=\frac{70-80}{2}=-5
$$

Other approximations (including centered differences of the above calculations) are also acceptable as long as you show work justifying your steps.
(c) Let

$$
f(x, y, z)=g(x, y)-z
$$

The surface $z=g(x, y)$ is one level surface of $f(x, y, z)$, thus ∇f is normal to this surface.

$$
\nabla f(x, y, z)=\left\langle g_{x}(x, y), g_{y}(x, y),-1\right\rangle
$$

Thus

$$
\mathbf{n}=\frac{\nabla f(9,16,80)}{\|\nabla f(9,16,80)\|}
$$

is normal to the graph of the surface at the point $(9,16,80)$.
Using our estimates from part (a) and (b):

$$
\nabla f(9,16,80)=\left\langle g_{x}(9,16), g_{y}(9,16),-1\right\rangle \approx\left\langle\frac{10}{3},-\frac{5}{2},-1\right\rangle
$$

Thus

$$
\mathbf{n} \approx \frac{\left\langle\frac{10}{3},-\frac{5}{2},-1\right\rangle}{\sqrt{(10 / 3)^{2}+(-5 / 2)^{2}+1}}
$$

(d) Yes, there is a critical point when $\mathrm{g}(\mathrm{x}, \mathrm{y})=113$
(e) Since ∇g is a conservative field, the work done around any closed curve is zero. Since $g(x, y)=110$ is a closed curve, the work done is zero.
(f) The total flux is $\oint_{C} \nabla g \cdot \mathbf{n} d s$ where \mathbf{n} is the outward pointing unit normal. Since ∇g points in the direction of greatest increase, for this function it points inward to the level curves and thus $\mathbf{n}=-\frac{\nabla g}{\|\nabla g\|}$ is the outward unit normal to the level curve $g(x, y)=110$. Thus the total flux is

$$
\oint_{C} \nabla g \cdot \mathbf{n} d s=\oint_{C} \nabla g \cdot\left(\frac{-\nabla g}{\|\nabla g\|}\right) d s=-\oint_{C}\|\nabla g\| d s<0
$$

(g) We can use the Fundamental Theorem of Line Integrals:

$$
\int_{C} \nabla g \cdot d \mathbf{r}=g(9,20)-g(21,12)=70-110=-40
$$

Problem 2 (30 points)
The following questions are not related:
(a) Given

$$
\mathbf{F}=z \mathbf{i}+x \mathbf{j}-3 e^{y^{2}} \arctan \left(z^{2}\right) \mathbf{k}
$$

Find the outward flux through the surface that consists of the part of the cylinder $x^{2}+y^{2}=16$ that lies in the first octant between $z=0$ and $z=5$. (By outward we mean oriented away from the z-axis. Note that this surface is not closed).
(b) Evaluate

$$
\int_{\mathcal{C}}(2 x \cos y+3) d x-\left(x^{2} \sin y+2 y\right) d y
$$

where \mathcal{C} is the path $\mathbf{r}(t)=\cos ^{3} t \mathbf{i}+\sin ^{3} t \mathbf{j}, \quad 0 \leq t \leq \pi / 2$.

SOLUTION:

(a) We need to compute $\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \mathrm{d} S$, a standard vector surface (flux) integral.

$$
\begin{aligned}
g(x, y, z)=x^{2}+y^{2} & \Longrightarrow \nabla g=\langle 2 x, 2 y, 0\rangle \quad \text { (use positive gradient for outward normal) } \\
\mathbf{F} \cdot \nabla g & =\left\langle z, x,-3 e^{y^{2}} \arctan \left(z^{2}\right)\right\rangle \cdot\langle 2 x, 2 y, 0\rangle=2 x(y+z)
\end{aligned}
$$

project onto the $y z$-plane $\Longrightarrow \mathbf{p}=\mathbf{i},|\nabla g \cdot \mathbf{p}|=|2 x|=2 x$ since $x>0$ and

$$
\begin{gathered}
\mathcal{R}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=0,0 \leq y \leq 4,0 \leq z \leq 5\right\} \\
\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \mathrm{d} S=\iint_{\mathcal{R}} \mathbf{F} \cdot \frac{\nabla g}{|\nabla g \cdot \mathbf{p}|} \mathrm{d} A=\int_{0}^{5} \int_{0}^{4}(y+z) \mathrm{d} y \mathrm{~d} z=90
\end{gathered}
$$

Note: Projecting onto the $x z$-plane results in an integrand of $\frac{x(y+z)}{y}$ which, using the surface to eliminate y, gives

$$
\int_{0}^{5} \int_{0}^{4}\left(\frac{x z}{\sqrt{16-x^{2}}}+x\right) \mathrm{d} x \mathrm{~d} z=90
$$

(b) Direct integration is not possible as the integrand will contain terms like $\cos \left(\sin ^{3} t\right)$. Noting that the integral can be written alternatively as $\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}$ with $\mathbf{F}=\left\langle 2 x \cos y+3,-x^{2} \sin y-2 y\right\rangle=\langle P, Q\rangle$, we check to see if \mathbf{F} is conservative.

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=-2 x \sin y-(-2 x \sin y)=0
$$

Since \mathbf{F} is defined throughout \mathbb{R}^{2}, which is simply connected, and $\nabla \times \mathbf{F}=\mathbf{0}, \mathbf{F}$ is conservative. This means that the integral is path independent and also that a potential function, f, exists such that $\mathbf{F}=\nabla f$. This provides two options:

Option 1 - find the potential and use the Fundamental Theorem for Line Integrals

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x \cos y+3 \Longrightarrow f(x, y)=x^{2} \cos y+3 x+g(y) \\
\frac{\partial f}{\partial y}=-x^{2} \sin y+g^{\prime}(y)=-x \sin y-2 y \Longrightarrow g^{\prime}(y)=-2 y \Longrightarrow g(y)=-y^{2}+c \\
f(x, y)=x^{2} \cos y+3 x-y^{2}+c
\end{gathered}
$$

Then we have

$$
\begin{gathered}
\int_{\mathcal{C}}(2 x \cos y+3) \mathrm{d} x-\left(x^{2} \sin y+2 y\right) \mathrm{d} y=\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\int_{\mathcal{C}} \nabla f \cdot \mathrm{~d} \mathbf{r} \\
=f(0,1)-f(1,0)=(-1+c)-(4+c)=-5
\end{gathered}
$$

Option 2 - integrate along another path

To avoid more complex integrations which would occur if using the line segment between $(1,0)$ and $(0,1)$, we choose the path $(1,0) \rightarrow(0,0) \rightarrow(0,1)$ consisting of two line segments. For the part along the x-axis we have $x=1-t, y=0,0 \leq t \leq 1$ with $\mathrm{d} x=-\mathrm{d} t$ and $\mathrm{d} y=0$ and for the part along the y-axis we use $x=0, y=t, 0 \leq t \leq 1$ with $\mathrm{d} x=0$ and $\mathrm{d} y=\mathrm{d} t$. Then

$$
\begin{gathered}
\int_{\mathcal{C}}(2 x \cos y+3) \mathrm{d} x-\left(x^{2} \sin y+2 y\right) \mathrm{d} y=\int_{0}^{1}[2(1-t)+3](-\mathrm{d} t)+\int_{0}^{1}-2 t \mathrm{~d} t \\
=\int_{0}^{1}(-5+2 t) \mathrm{d} t+\int_{0}^{1}-2 t \mathrm{~d} t=\int_{0}^{1}-5 \mathrm{~d} t=-5
\end{gathered}
$$

Problem 3 (25 points)

A metal plate lies in the $x y$-plane in the region $0 \leq x \leq 4-y^{2}$
(i.e the region in quadrants I and IV bounded by the y-axis and the curve $x=4-y^{2}$).
(a) Sketch and shade the region where the plate lies. Label any intercepts.
(b) Find the work done by

$$
\mathbf{G}=\left\langle y x^{2}-3 y+e^{\cos (x)}, \quad \frac{x^{3}}{3}-\arctan y\right\rangle
$$

counterclockwise once around the boundary of the plate.
(c) Let the temperature at any point on the plate be given by $T(x, y)=y^{2}+x^{2}-x$. Find the location(s) of the hottest and coldest points on the plate. Show work fully justifying your answer.

SOLUTION:

(a) The region looks like this:

(b) The boundary curve C of the region is piecewise smooth and closed, and the vector field \mathbf{G} has continuous first partial derivatives, so we should use Green's Theorem. With $\mathbf{G}=\langle P(x, y), Q(x, y)\rangle$,

$$
\begin{aligned}
\oint_{C} \mathbf{G} \cdot d \mathbf{r} & =\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\iint_{R}\left[x^{2}-\left(x^{2}-3\right)\right] d A \\
& =\iint_{R} 3 d A \\
& =3 \int_{-2}^{2} \int_{0}^{4-y^{2}} 1 d x d y \\
& =3 \int_{-2}^{2}[x]_{0}^{4-y^{2}} d y \\
& =3 \int_{-2}^{2}\left(4-y^{2}\right) d y \\
& =3\left[4 y-\frac{y^{3}}{3}\right]_{-2}^{2} \\
& =3\left\{\left[4(2)-\frac{(2)^{3}}{3}\right]-\left[4(-2)-\frac{(-2)^{3}}{3}\right]\right\} \\
& =3\left[\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)\right] \\
& =24-8+24-8 \\
& =32
\end{aligned}
$$

(c) By the Extreme Value Theorem there must exist absolute max and min temperatures on the plate. We have to optimize the temperature function $T(x, y)=y^{2}+x^{2}-x$ inside the plate and on the boundary of the plate.

For full credit you must find all possible max/min on the interior and boundary, and compare the temperatures at each point to find the absolute max and min.

To optimize $T(x, y)$ on the inside of the plate, note that $\nabla T(x, y)=\langle 2 x-1,2 y\rangle$, which equals $\langle 0,0\rangle$ when

$$
2 x-1=0 \Longrightarrow x=\frac{1}{2} \quad \text { and } \quad 2 y=0 \Longrightarrow y=0
$$

Since $\nabla T(x, y)$ always exists (T is a polynomial in two variables), $\left(\frac{1}{2}, 0\right)$ is the only critical point of $T(x, y)$, which is in the interior of the metal plate. We will evaluate $T(x, y)$ at this point after we have found all points of interest.

To optimize $T(x, y)$ on the boundary of the plate, we break the curve C into two pieces, say C_{1} is the line segment on the y-axis given by $x=0$ and $-2 \leq y \leq 2$, and C_{2} is the curve $x=4-y^{2}$ for $-2 \leq y \leq 2$.

On C_{1}, since $x=0$ we study the function $T_{1}(y)=T(0, y)=y^{2}$ on the interval $[-2,2]$. Since $T_{1}^{\prime}(y)=2 y$ which equals zero when $y=0$, we have three points of interest (when $y=0$ and including the endpoints $y= \pm 2$) to consider later:

$$
(0,0) \quad(0,2) \quad(0,-2)
$$

To optimize $T(x, y)$ on the curve C_{2} there are two methods we could use:
Method 1: just like on C_{1}, since $x=4-y^{2}$ on C_{2} we study the function

$$
\begin{aligned}
& T_{2}(y)=T\left(4-y^{2}, y\right)=y^{2}+\left(4-y^{2}\right)^{2}-\left(4-y^{2}\right)=y^{2}+16-8 y^{2}+y^{4}-4+y^{2}=y^{4}-6 y^{2}+12 \\
& \quad \text { for }-2 \leq y \leq 2
\end{aligned}
$$

But

$$
T_{2}^{\prime}(y)=4 y^{3}-12 y=4 y\left(y^{2}-3\right)
$$

which equals zero when $y=0, \pm \sqrt{3}$. This gives us three more points of interest to consider:

$$
(4,0) \quad(1, \sqrt{3}) \quad(1,-\sqrt{3})
$$

(note that the 'endpoint' $y= \pm 2$ are the same as on C_{1})
Method 2: we could use Lagrange multipliers. Let $g(x, y)=x+y^{2}$. Then the curve C_{2} is the level curve $g(x, y)=4$. We want to solve the system

$$
\nabla T(x, y)=\lambda \nabla g(x, y) \quad \text { and } \quad g(x, y)=4
$$

or

$$
\langle 2 x-1,2 y\rangle=\lambda\langle 1,2 y\rangle \quad \text { and } \quad x=4-y^{2}
$$

or

$$
\begin{aligned}
2 x-1 & =\lambda \\
2 y & =2 \lambda y \\
x & =4-y^{2}
\end{aligned}
$$

The second equation tells us that

$$
2 y-2 \lambda y=0 \quad \text { or } \quad 2 y(1-\lambda)=0,
$$

so either $y=0$ or $\lambda=1$. If $y=0$, the third equation gives $x=4$, so $(4,0)$ is a point of interest.
If $\lambda=1$, then the first equation says that $2 x-1=1$ or $x=1$. The third equation then gives $y= \pm \sqrt{3}$. We get the two points of interest $(1, \pm \sqrt{3})$.

To finish the problem, we evaluate $T(x, y)$ at all of the points of interest:

$$
\begin{aligned}
T\left(\frac{1}{2}, 0\right) & =-\frac{1}{4} \\
T(0,0) & =0 \\
T(0,-2) & =4 \\
T(0,2) & =4 \\
T(4,0) & =12 \\
T(1, \sqrt{3}) & =3 \\
T(1,-\sqrt{3}) & =3
\end{aligned}
$$

The hottest point on the plate is therefore $(4,0)$ and the coldest point is $\left(\frac{1}{2}, 0\right)$.
For fun, this is what the temperature distribution on the inside and on the boundary of the plate looks like:

Problem 4 (35 points)
The integral

$$
\int_{0}^{2 \sqrt{2}} \int_{-\sqrt{8-y^{2}}}^{\sqrt{8-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{16-x^{2}-y^{2}}} d z d x d y
$$

represents the volume of a 3 D region, \mathcal{E}.
(a) Sketch and shade a 2D cross section of the object in the $r z$-plane. Label the (r, z) coordinates on all corners of the cross section.
(b) Sketch and shade the projection of the object onto the $x y$-plane. Label any intercepts.
(c) Set up but DO NOT EVALUATE, equivalent integral(s) to find the volume of the object using:
(i) Cylindrical coordinates in the order $d z d r d \theta$
(ii) Spherical coordinates in the order $d \rho d \phi d \theta$
(d) Calculate the total outward flux of

$$
\boldsymbol{F}=\left(x z^{2}+\tan \left(y^{2} z\right)\right) \mathbf{i}+\left(y x^{2}-x e^{\cos (z)}\right) \mathbf{j}+\left(z y^{2}\right) \mathbf{k}
$$

across the entire surface of \mathcal{E}.

SOLUTION:

The surface looks like the figure below.

(a)

(b)

(c)
(i) $\int_{0}^{\pi} \int_{0}^{2 \sqrt{2}} \int_{r}^{\sqrt{16-r^{2}}} r d z d r d \theta$
(ii) $\int_{0}^{\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{4} \rho^{2} \sin (\phi) d \rho d \phi d \theta$
(d) Calculating

$$
\begin{aligned}
\int_{V}(\nabla \cdot \boldsymbol{F}) d V & =\int_{V}\left(z^{2}+x^{2}+y^{2}\right) d V=\int_{0}^{\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{4}\left(\rho^{2}\right) \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =\left(\int_{0}^{\pi} d \theta\right)\left(\int_{0}^{\frac{\pi}{4}} \sin (\phi) d \phi\right)\left(\int_{0}^{4} \rho^{4} d \rho\right)=\left(\left.\theta\right|_{0} ^{\pi}\right)\left(-\left.\cos (\phi)\right|_{0} ^{\frac{\pi}{4}}\right)\left(\left.\frac{\rho^{5}}{5}\right|_{0} ^{4}\right) \\
& =\pi\left(\cos (0)-\cos \left(\frac{\pi}{4}\right)\right) \frac{4^{5}}{5}=\pi\left(1-\frac{\sqrt{2}}{2}\right) \frac{1024}{5},
\end{aligned}
$$

by the Divergence Theorem, the outward flux is

$$
\oiint \boldsymbol{F} \cdot \boldsymbol{n} d S=\int_{V}(\nabla \cdot \boldsymbol{F}) d V=\pi\left(1-\frac{\sqrt{2}}{2}\right) \frac{1024}{5} .
$$

Problem 5 (25 points)
Let \mathcal{C} be the path parameterized by

$$
\mathbf{r}(t)=\langle 2 \cos t, \quad 2 \sin t, \quad 3-\cos t\rangle, \quad 0 \leq t \leq 2 \pi
$$

(a) \mathcal{C} lies in a plane. Find the equation of that plane.
(b) Let

$$
\mathbf{F}(x, y, z)=\left\langle e^{x^{2}}+2 z^{2}, \quad \sinh \left(y^{2}\right), \quad \cos \left(z^{2}\right)+z y\right\rangle
$$

Find the circulation of $\mathbf{F}(x, y, z)$ around \mathcal{C}.

SOLUTION:

(a) To find the equation of the plane we need a point and a normal vector.

One possible point : $t=0 \Longrightarrow(x, y, z)=(2,0,2)$.
To find the normal vector:
Option 1: Find 3 points on the curve, create 2 vectors between them and find their cross product:

$$
P_{1}: t=0 \Longrightarrow(x, y, z)=(2,0,2)
$$

$P_{2}: t=\pi / 2 \Longrightarrow(x, y, z)=(0,2,3)$.
$P_{3}: t=\pi \Longrightarrow(x, y, z)=(-2,0,4)$.

$$
P_{1} P_{2} \times P_{1} P_{3}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-2 & 2 & 1 \\
-4 & 0 & 2
\end{array}\right|=\langle 4,0,8\rangle
$$

Thus the plane is $4(x-2)+0(y-0)+8(z-2)=0$

$$
\Longrightarrow x+2 z=6
$$

Option 2:
The normal vector to the osculating plane (binormal vector of the curve) will point in the direction of $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$:

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-2 \sin (t) & 2 \cos (t) & \sin (t) \\
-2 \cos (t) & -2 \sin (t) & \cos (t)
\end{array}\right|
$$

$=\left\langle 2 \cos ^{2}(t)+2 \sin ^{2}(t), 2 \sin (t) \cos (t)-2 \sin (t) \cos (t), 4 \sin ^{2}(t)+4 \cos (t)\right\rangle$
$=\langle 2,0,4\rangle$
Thus, the osculating plane to the curve \mathcal{C} is constant i.e. \mathcal{C} lies in a plane which has a normal vector that points in the direction of $\langle 2,0,4\rangle$.

Thus the plane is $2(x-2)+0(y-0)+4(z-2)=0$

$$
\Longrightarrow x+2 z=6
$$

(b) Note that integrating $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t$ would be impossible. We can start by checking to see if this vector field is conservative:

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x^{2}}+2 z^{2} & \sinh \left(y^{2}\right) & \cos \left(z^{2}\right)+z y
\end{array}\right|=\langle z, 4 z, 0\rangle
$$

Thus \mathbf{F} is not conservative.
However, since C is a closed curve, Stokes' theorem tells us that

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{S}}(\nabla \times \mathbf{F}) \cdot \hat{n} d S
$$

If we model the plane by the equation $x+2 z=d$ it becomes a level surface of the function $g(x, y, z)=$ $x+2 z$.

Thus $\nabla g(x, y, z)=\langle 1,0,2\rangle$. Checking orientation, this follows the right-hand rule with the direction of C.

Projecting onto the $x y$-plane we get:

$$
(\nabla \times \mathbf{F}) \cdot \hat{n} d S=\frac{(\nabla \times \mathbf{F}) \cdot \nabla g}{|\nabla g \cdot \hat{k}|} d A=\frac{\langle z, 4 z, 0\rangle \cdot\langle 1,0,2\rangle}{2} d x d y=\frac{1}{2} z
$$

Since on the plane $z=3-\frac{x}{2}$, we can convert the integrand to be in terms of $x y$:

$$
\frac{1}{2} z=\frac{1}{2}\left(3-\frac{x}{2}\right)
$$

The region of integration on the $x y$-plane is given by the x and y coordinates of C. Since $x=2 \cos t$ and $y=\sin t$, this traces out a circle of radius 2 centered at the origin in the $x y$-plane.

Thus,

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{S}}(\nabla \times \mathbf{F}) \cdot \hat{n} d S=\iint_{R}\left(\frac{3}{2}-\frac{x}{4}\right) d A
$$

$$
\begin{gathered}
=\int_{0}^{2 \pi} \int_{0}^{2}\left(\frac{3 r}{2}-\frac{1}{4} r^{2} \cos \theta\right) d r d \theta \\
=\int_{0}^{2 \pi}\left(3-\frac{2}{3} \cos \theta\right) d \theta=3(2 \pi)-0=6 \pi
\end{gathered}
$$

