APPM 2350—Final Exam

Saturday, Dec 11th 7:30am-10am 2021
Show all your work and simplify your answers. Answers with no justification will receive no points. You are allowed one 8.5×11-in page of notes (TWO sided). You may NOT use a calculator, smartphone, smartwatch, the Internet or any other electronic device.

Problem 1 (35 points)
Use the portion of the level curve graph of $g(x, y)$ shown below to answer the following questions. You can assume $g(x, y)$ is a continuous function with continuous partial derivatives.

Do NOT try to find an expression for the actual function $g(x, y)$ (no credit will be given). Use ONLY the information provided on the level curve plot to answer the following questions:
(a) Estimate $g_{y}(9,16)$. For credit, show work justifying your estimate.
(b) Estimate the derivative of $g(x, y)$ at the point $(9,16)$ in the direction $-3 \mathbf{i}+4 \mathbf{j}$. For credit, show work justifying/explaining your estimate.
(c) Estimate \mathbf{n}, a unit vector that is normal to the surface $z=g(x, y)$ at the point $(9,16,80)$. For credit, show work justifying your estimate.
(d) Based on the level curves shown, are there any points in the domain where $\nabla g=\overrightarrow{0}$? If not, explain why. If so, give the value of $g(x, y)$ at the point(s).
(e) Let \mathcal{C} be the level curve defined by $g(x, y)=110$ and oriented counter-clockwise. Determine whether the work done by $\mathbf{G}=\nabla g$ around \mathcal{C} is positive, zero or negative. Justify your answer.
(f) Let \mathcal{C} be the level curve defined by $g(x, y)=110$. Determine whether the total outward flux of $\mathbf{G}=\nabla g$ through \mathcal{C} is positive, zero or negative. Justify your answer.
(g) Evaluate $\int_{\mathcal{C}_{1}} \nabla g \cdot \mathbf{d r}, \quad$ where \mathcal{C}_{1} is the straight line path from $(x, y)=(21,12)$ to $(x, y)=(9,20)$.

Problem 2 (30 points)
The following questions are not related:
(a) Given

$$
\mathbf{F}=z \mathbf{i}+x \mathbf{j}-3 e^{y^{2}} \arctan \left(z^{2}\right) \mathbf{k}
$$

Find the outward flux through the surface that consists of the part of the cylinder $x^{2}+y^{2}=16$ that lies in the first octant between $z=0$ and $z=5$. (By outward we mean oriented away from the z-axis. Note that this surface is not closed).
(b) Evaluate

$$
\int_{\mathcal{C}}(2 x \cos y+3) d x-\left(x^{2} \sin y+2 y\right) d y
$$

where \mathcal{C} is the path $\mathbf{r}(t)=\cos ^{3} t \mathbf{i}+\sin ^{3} t \mathbf{j}, \quad 0 \leq t \leq \pi / 2$.

Problem 3 (25 points)
A metal plate lies in the $x y$-plane in the region $0 \leq x \leq 4-y^{2}$
(i.e the region in quadrants I and IV bounded by the y-axis and the curve $x=4-y^{2}$).
(a) Sketch and shade the region where the plate lies. Label any intercepts.
(b) Find the work done by

$$
\mathbf{G}=\left\langle y x^{2}-3 y+e^{\cos (x)}, \quad \frac{x^{3}}{3}-\arctan y\right\rangle
$$

counterclockwise once around the boundary of the plate.
(c) Let the temperature at any point on the plate be given by $T(x, y)=y^{2}+x^{2}-x$. Find the location(s) of the hottest and coldest points on the plate. Show work fully justifying your answer.

Problem 4 (35 points)
The integral

$$
\int_{0}^{2 \sqrt{2}} \int_{-\sqrt{8-y^{2}}}^{\sqrt{8-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{16-x^{2}-y^{2}}} d z d x d y
$$

represents the volume of a 3 D region, \mathcal{E}.
(a) Sketch and shade a 2D cross section of the object in the $r z$-plane. Label the (r, z) coordinates on all corners of the cross section.
(b) Sketch and shade the projection of the object onto the $x y$-plane. Label any intercepts.
(c) Set up but DO NOT EVALUATE, equivalent integral(s) to find the volume of the object using:
(i) Cylindrical coordinates in the order $d z d r d \theta$
(ii) Spherical coordinates in the order $d \rho d \phi d \theta$
(d) Calculate the total outward flux of

$$
\boldsymbol{F}=\left(x z^{2}+\tan \left(y^{2} z\right)\right) \mathbf{i}+\left(y x^{2}-x e^{\cos (z)}\right) \mathbf{j}+\left(z y^{2}\right) \mathbf{k}
$$

across the entire surface of \mathcal{E}.

Problem 5 (25 points)
Let \mathcal{C} be the path parameterized by

$$
\mathbf{r}(t)=\langle 2 \cos t, \quad 2 \sin t, \quad 3-\cos t\rangle, \quad 0 \leq t \leq 2 \pi
$$

(a) \mathcal{C} lies in a plane. Find the equation of that plane.
(b) Let

$$
\mathbf{F}(x, y, z)=\left\langle e^{x^{2}}+2 z^{2}, \quad \sinh \left(y^{2}\right), \quad \cos \left(z^{2}\right)+z y\right\rangle
$$

Find the circulation of $\mathbf{F}(x, y, z)$ around \mathcal{C}.

