APPM 2350—Final Exam Saturday, Dec 11th 7:30am-10am 2021

Show all your work and simplify your answers. Answers with no justification will receive no points. You are allowed one 8.5×11-in page of notes (TWO sided). You may NOT use a calculator, smartphone, smartwatch, the Internet or any other electronic device.

Problem 1 (35 points)

Use the portion of the level curve graph of g(x, y) shown below to answer the following questions. You can assume g(x, y) is a continuous function with continuous partial derivatives.

Do NOT try to find an expression for the actual function g(x, y) (no credit will be given). Use ONLY the information provided on the level curve plot to answer the following questions:

- (a) Estimate $g_y(9, 16)$. For credit, *show work* justifying your estimate.
- (b) Estimate the derivative of g(x, y) at the point (9, 16) in the direction $-3\mathbf{i} + 4\mathbf{j}$. For credit, *show work* justifying/explaining your estimate.
- (c) Estimate n, a unit vector that is normal to the surface z = g(x, y) at the point (9, 16, 80). For credit, *show work* justifying your estimate.
- (d) Based on the level curves shown, are there any points in the domain where $\nabla g = \vec{0}$? If not, explain why. If so, give the value of q(x, y) at the point(s).
- (e) Let C be the level curve defined by g(x, y) = 110 and oriented counter-clockwise. Determine whether the work done by $\mathbf{G} = \nabla g$ around C is positive, zero or negative. Justify your answer.
- (f) Let C be the level curve defined by g(x, y) = 110. Determine whether the total outward flux of $\mathbf{G} = \nabla g$ through C is positive, zero or negative. Justify your answer.
- (g) Evaluate $\int_{C_1} \nabla g \cdot d\mathbf{r}$, where C_1 is the straight line path from (x, y) = (21, 12) to (x, y) = (9, 20).

Problem 2 (30 points)

The following questions are not related:

(a) Given

$$\mathbf{F} = z \,\mathbf{i} + x \,\mathbf{j} - 3e^{y^2} \arctan(z^2) \,\mathbf{k}$$

Find the outward flux through the surface that consists of the part of the cylinder $x^2 + y^2 = 16$ that lies in the **first octant** between z = 0 and z = 5. (By outward we mean oriented away from the *z*-axis. Note that this surface is not closed).

(b) Evaluate

$$\int_{\mathcal{C}} (2x\cos y + 3) \, dx - (x^2\sin y + 2y) \, dy$$

where C is the path $\mathbf{r}(t) = \cos^3 t \mathbf{i} + \sin^3 t \mathbf{j}, \quad 0 \le t \le \pi/2.$

CONT'D ON REVERSE SIDE

Problem 3 (25 points)

A metal plate lies in the xy-plane in the region $0 \le x \le 4 - y^2$

- (i.e the region in quadrants I and IV bounded by the y-axis and the curve $x = 4 y^2$).
 - (a) Sketch and shade the region where the plate lies. Label any intercepts.
 - (b) Find the work done by

$$\mathbf{G} = \left\langle yx^2 - 3y + e^{\cos(x)}, \frac{x^3}{3} - \arctan y \right\rangle$$

counterclockwise once around the boundary of the plate.

(c) Let the temperature at any point on the plate be given by $T(x, y) = y^2 + x^2 - x$. Find the location(s) of the hottest and coldest points on the plate. Show work fully justifying your answer.

Problem 4 (35 points)

The integral

$$\int_{0}^{2\sqrt{2}} \int_{-\sqrt{8-y^2}}^{\sqrt{8-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{16-x^2-y^2}} dz \, dx \, dy$$

represents the volume of a 3D region, \mathcal{E} .

- (a) Sketch and shade a 2D cross section of the object in the rz-plane. Label the (r, z) coordinates on all corners of the cross section.
- (b) Sketch and shade the projection of the object onto the xy-plane. Label any intercepts.
- (c) Set up but DO NOT EVALUATE, equivalent integral(s) to find the volume of the object using:
 - (i) Cylindrical coordinates in the order $dz dr d\theta$
 - (ii) Spherical coordinates in the order $d\rho \, d\phi \, d\theta$
- (d) Calculate the total outward flux of

$$\mathbf{F} = (xz^2 + \tan(y^2z))\mathbf{i} + (yx^2 - xe^{\cos(z)})\mathbf{j} + (zy^2)\mathbf{k}$$

across the entire surface of \mathcal{E} .

Problem 5 (25 points) Let C be the path parameterized by

 $\mathbf{r}(t) = \langle 2\cos t, \ 2\sin t, \ 3 - \cos t \rangle, \quad 0 \le t \le 2\pi$

- (a) \mathcal{C} lies in a plane. Find the equation of that plane.
- (b) Let
 - $\mathbf{F}(x, y, z) = \left\langle e^{x^2} + 2z^2, \quad \sinh(y^2), \quad \cos(z^2) + zy \right\rangle$ Find the circulation of $\mathbf{F}(x, y, z)$ around \mathcal{C} .