1. Sketch the region of integration and evaluate the following integral by switching to polar coordinates.

\[\int_{1}^{2} \int_{-\sqrt{2y-y^2}}^{0} \frac{y}{x^2+y^2} \, dx \, dy \]

Potentially helpful information: \(\cos^2 x = \frac{1}{2} (1 + \cos 2x) \) \(\sin^2 x = \frac{1}{2} (1 - \cos 2x) \)

2. The density of pollen particles is given by \(\rho(x, y) = 72(x+y)e^{x^2-y^2} \text{ g/cm}^2 \). By making an appropriate change of variables, determine the mass of pollen contained in the rectangle, \(R \), enclosed by the lines \(x-y = 0, x-y = 2, x+y = 3, x+y = 6 \).

3. Consider the region \(W \) below the fourth quadrant and inside the sphere \(x^2 + y^2 + z^2 = 36 \) between the planes \(z = -3 \) and \(z = -3\sqrt{3} \). We want to find \(B = \iiint_{W} xyz \, dV \).

 (a) Set up, but DO NOT EVALUATE the integral(s) necessary to compute \(B \) in rectangular/Cartesian coordinates using the order \(dz \, dy \, dx \).

 (b) Set up, but DO NOT EVALUATE the integral(s) necessary to compute \(B \) in cylindrical coordinates using the order \(dr \, dz \, d\theta \).

 (c) Set up, but DO NOT EVALUATE the integral(s) necessary to compute \(B \) in spherical coordinates using the order \(d\rho \, d\phi \, d\theta \).

4. Evaluate \(\iint_{S} 48\sqrt{3} \, yz \, dS \) where \(S \) is the portion of the surface \(\sqrt{3}x = y + 2z^2 \) with \(-\sqrt{3}/2 \leq y \leq 0, -y \leq z \leq \sqrt{3}/2 \).

5. The electric charge \(q \) at a point \((x, y, z) \) in space is equal to the square of the distance from the point to the origin. Find the average value of the charge on a wire that lies along the curve \(C = (\sin(\pi t^2), \sqrt{3}\pi t^2, \cos(\pi t^2)) \), \(t > 0 \) between the points \((0, \sqrt{3}\pi, -1) \) and \((0, 4\sqrt{3}\pi, 1) \).