ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) lecture section/time (4) your instructor’s name, and (5) a grading table. Text books, class notes, and calculators are NOT permitted. A one-page one-sided crib sheet is allowed.

Problem 1 – True/False: (20 points)
For the following true/false questions, write TRUE (for always true) or FALSE (if not always true). Your work will not be graded.

(a) The force field \(\mathbf{F}(x, y) = \langle -16 - 5y - 3x^2, -7 - 5x - 4y^2 \rangle \) acts mostly against the movement of a particle that travels once counterclockwise around the triangle with corners \((1, 0), (0, 1), (-1, 0)\) because the work done is negative.

(b) For any function \(f(x, y) \) continuous on all of \(\mathbb{R}^2 \), \(\int_0^1 \int_0^x f(x, y) \, dy \, dx = \int_0^1 \int_0^y f(x, y) \, dx \, dy \).

(c) A line parallel to the \(y \)-axis through the center of mass of a closed, connected, two-dimensional lamina in the \(x-y \) plane divides the lamina into subregions of equal area.

(d) Suppose the curve \(C \) is the straight line path from the origin to the point \((\pi, \pi)\), then the line integral \(\int_C \mathbf{G} \cdot d\mathbf{r} \) can be written \(\int_0^\pi f(t, t) \, dt \).

Problem 2 – Short Answer Questions: (40 points)
For the questions in this problem, show all your work and clearly box your final answer. Partial credit may be given.

(a) The integral
\[
I = \int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \int_0^{\sqrt{4-x^2-y^2}} dz \, dx \, dy
\]
calculates the volume of a 3D object in Cartesian coordinates. However, it’s difficult to evaluate in these coordinates. Convert the integral \(I \) to an equivalent integral (or integrals) in spherical coordinates. (You DO NOT need to evaluate).

(b) Let \(C \) be the level curve defined by \(g(x, y) = 110 \) and oriented counter-clockwise. Determine whether the work done by \(\mathbf{G} \) around \(C \) is positive, zero, or negative. Justify your answer.

(c) Let \(C \) be the level curve defined by \(g(x, y) = 110 \) and oriented counter-clockwise. Determine whether the total flux of \(\mathbf{G} \) out of \(C \) is positive, zero, or negative. Justify your answer.

(d) Let \(C' \) be the straight line path \(\mathbf{r}(t) \) from \((x, y) = (18, 76)\) to \((x, y) = (9, 80)\). Evaluate the work integral \(\int_{C'} \mathbf{G} \cdot d\mathbf{r} \).
Problem 3: (40 points)
On a certain day, the density of lightning strikes in the Colorado Rocky Mountains was found to be well-approximated by the function

\[\delta(x, y) = (x^2 + y^2)^{3/2} \left[1 + 12 \tan^{-1} \left(\frac{y}{x} \right) \right] \]

strikes per unit area. Some colleagues of yours need to calculate the total number of lightning strikes \(N \) that day in a certain area to help determine the risk of new forest fires. They have decided that this can be accomplished by computing the value of

\[N = \int_{\sqrt{3}/2}^{1} \int_{x/\sqrt{3}}^{\sqrt{3}/2} \delta(x, y) \, dy \, dx + \int_{1}^{\sqrt{3}} \int_{0}^{x/\sqrt{3}} \delta(x, y) \, dy \, dx + \int_{\sqrt{3}}^{2} \int_{0}^{\sqrt{4-x^2}} \delta(x, y) \, dy \, dx. \]

However, since they took Calculus 3 many moons ago, they cannot recall how to do this calculation. Come to their assistance by determining the total number \(N \) of lightning strikes in their area of interest, simplifying your final answer. \(\text{Hint: draw the region of integration. Another coordinate system will be useful.} \)

Problem 4: (40 points)
Your mechanical engineering friend designs a new part using CAD software. An important component of the part is determined by the curve \(C \) that is given by the intersection of the surfaces \(y = x^2 + 9 \) and \(z = 3 \) in three dimensions.

(a) A wire is placed along the curve \(C \) from \((2, 13, 3)\) to \((3, 18, 3)\) whose density at a point on the wire is given by its \(x \)-coordinate. Unfortunately, the CAD software is not capable of determining the mass of the wire so, your friend needs your help. Find the mass of the wire.

(b) Let \(\mathbf{G}(x, y, z) = 2xy \mathbf{i} + (x^2 + 2z) \mathbf{j} + 2y \mathbf{k} \) be a vector force field. Show that \(\mathbf{G} \) is conservative and find its potential function \(g(x, y, z) \) so that \(\mathbf{G}(x, y, z) = \nabla g(x, y, z) \).

(c) Find the work done on the particle by the force field \(\mathbf{G} \) when moving along \(C \) from \((0, 9, 3)\) to \((2, 13, 3)\).