1. (10 pts) Given vectors a and b, prove that if

$$(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = |\mathbf{a}|^2 + |\mathbf{b}|^2,$$

then a and b are orthogonal.

Solution:

By the distributive and commutative properties of the dot product and the identity $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$, we find that

$$(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b}$$
$$= \mathbf{a} \cdot \mathbf{a} + 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b}$$
$$= |\mathbf{a}|^2 + 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2.$$

Substituting $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = |\mathbf{a}|^2 + |\mathbf{b}|^2$ gives

$$|\mathbf{a}|^2 + |\mathbf{b}|^2 = |\mathbf{a}|^2 + 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2$$

and

$$0 = \mathbf{a} \cdot \mathbf{b}$$
.

Therefore the vectors **a** and **b** are orthogonal.

2. (12 pts) Evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2-y^2} dx dy$ by converting to polar coordinates.

Solution: The xy-plane corresponds to $0 \le \theta \le 2\pi$ and $r \ge 0$ in polar coordinates. We apply the identity $r^2 = x^2 + y^2$ and insert the Jacobian r to obtain

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} \, dx \, dy = \int_{0}^{2\pi} \int_{0}^{\infty} r e^{-r^2} \, dr \, d\theta.$$

The double integral can be written as the product of two single integrals.

$$= \left(\int_0^{2\pi} d\theta \right) \left(\int_0^\infty r e^{-r^2} dr \right)$$
$$= 2\pi \int_0^\infty r e^{-r^2} dr d\theta$$

Let $u = -r^2$, du = -2r dr.

$$= 2\pi \int_0^{-\infty} -\frac{1}{2}e^u du$$

$$= 2\pi \left(\lim_{t \to -\infty} \int_0^t -\frac{1}{2}e^u du\right)$$

$$= 2\pi \left(\lim_{t \to -\infty} -\frac{1}{2}\left[e^u\right]_0^t\right)$$

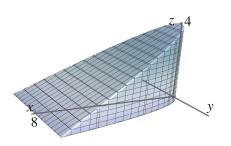
$$= -\pi \left(\lim_{t \to -\infty} \left(e^t - 1\right)\right) = \pi$$

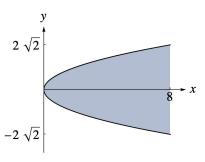
- 3. (28 pts) Consider the 3D region bounded by $x = y^2$, z = 0, and x + 2z = 8.
 - (a) Sketch and shade the projection of the region onto the xz-plane. Label all intercepts.
 - (b) Sketch and shade the projection of the region onto the yz-plane. Label all intercepts.
 - (c) Set up (but do not evaluate) triple integral(s) to find the volume of the region using rectangular coordinates in the order:
 - i. dz dx dy
 - ii. dy dx dz

Solution:

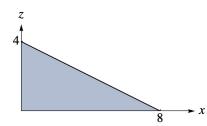
The solid is bounded by the parabolic cylinder $x=y^2$ and the planes z=0 and x+2z=8, as shown below on the left.

The two planes intersect at x=8. The projection of the solid onto the xy plane corresponds to the region bounded by $x=y^2$ from x=0 to x=8, as shown below on the right.

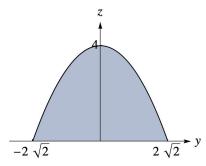




(a) The projection of the solid onto the xz plane corresponds to the region bounded by z=0 and the line $z=\frac{8-x}{2}$ from x=0 to x=8. When x=0, the z-intercept is z=4.



(b) The cylinder $x=y^2$ intersects the plane x+2z=8 at $y^2+2z=8$. Thus the projection of the solid onto the yz plane corresponds to the region bounded by z=0 and the curve $z=\frac{8-y^2}{2}$. When z=0, the y-intercepts are $y=\pm\sqrt{8}=\pm2\sqrt{2}$, and when y=0, the z-intercept is z=4.

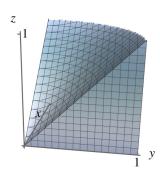


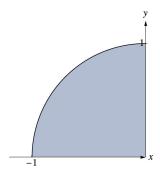
(c) i. In the xy plane, x extends from the curve $x=y^2$ to x=8, and y extends from $-2\sqrt{2}$ to $2\sqrt{2}$. In the z direction, z extends from the plane z=0 to the plane $z=4-\frac{x}{2}$. Therefore the integral is $\int_{-2\sqrt{2}}^{2\sqrt{2}} \int_{y^2}^8 \int_0^{4-x/2} dz \, dx \, dy$.

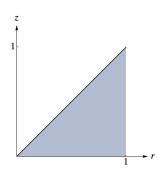
- ii. In the xz plane, x extends from 0 to the line x=8-2z, and z extends from 0 to 4. In the y direction, y extends from one boundary of the cylinder at $y=-\sqrt{x}$ to the other boundary at $y=\sqrt{x}$. Therefore the integral is $\int_0^4 \int_0^{8-2z} \int_{-\sqrt{x}}^{\sqrt{x}} dy \, dx \, dz$.
- 4. (20 pts) Consider the integral $\int_{-1}^{0} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{x^2+y^2}} dz \, dy \, dx$. Set up (but do not evaluate) equivalent integrals using
 - (a) cylindrical coordinates in the order $dz dr d\theta$.
 - (b) spherical coordinates in the order $d\rho d\phi d\theta$.

Solution:

The integral corresponds to the volume of the solid region above the second quadrant in the xy-plane, bounded above by the cone $z=\sqrt{x^2+y^2}$ and laterally by the circular cylinder $x^2+y^2=1$.







(a) The projection of the solid onto the xy plane corresponds to the portion of a unit circle, centered at the origin, that lies in the second quadrant. It follows that $\frac{\pi}{2} \le \theta \le \pi$ and $0 \le r \le 1$.

In the z direction, the solid extends from z=0 to the cone $z=\sqrt{x^2+y^2}=\sqrt{r^2}=r$.

Therefore the integral in cylindrical coordinates is $\int_{\pi/2}^{\pi} \int_{0}^{1} \int_{0}^{r} r \, dz \, dr \, d\theta$.

(b) In spherical coordinates, the bounds for the angle θ are again $\frac{\pi}{2}$ to π .

The lower and upper bounds for the angle ϕ correspond to z=r and z=0, respectively. If z=r, then

$$\rho\cos\phi = \rho\sin\phi \implies \frac{\sin\phi}{\cos\phi} = \tan\phi = 1 \implies \phi = \frac{\pi}{4},$$

and if $z = \rho \cos \phi = 0$, then $\phi = \frac{\pi}{2}$. Therefore $\frac{\pi}{4} \le \phi \le \frac{\pi}{2}$.

The lower bound for ρ is 0 at the origin, and the upper bound corresponds to

$$r = 1 \implies \rho \sin \phi = 1 \implies \rho = \csc \phi.$$

Therefore the integral in spherical coordinates is $\int_{\pi/2}^{\pi} \int_{\pi/4}^{\pi/2} \int_{0}^{\csc\phi} \rho^{2} \sin\phi \, d\rho \, d\phi \, d\theta.$

5. (15 pts) Consider the integral

$$\int_0^1 \int_{-2y}^{2y} (x - 2y) \sqrt{x + 2y} \, dx \, dy.$$

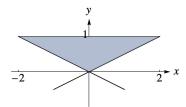
Use the transformation u = x - 2y, v = x + 2y to set up an equivalent integral over a region in the uv-plane. Sketch both the xy and uv regions. Do not evaluate the integral.

Solution:

Letting u=x-2y and v=x+2y gives $x=\frac{u+v}{2}$ and $y=\frac{v-u}{4}$. The Jacobian is

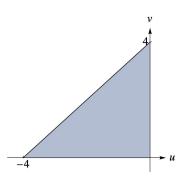
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{4} & \frac{1}{4} \end{vmatrix} = \frac{1}{4}.$$

The xy region is a triangle bounded by x = -2y, x = 2y, and y = 1.



xy boundaries	uv boundaries	uv equations
x = 2y	$\frac{u+v}{2} = 2 \cdot \frac{v-u}{4}$	u = 0
x = -2y	$\frac{u+v}{2} = -2 \cdot \frac{v-u}{4}$	v = 0
y = 1	$\frac{v-u}{4} = 1$	v = u + 4

The corresponding uv region is a triangle bounded by u=0, v=0, and v=u+4.



An equivalent integral over the uv-plane is

$$\int_{-4}^{0} \int_{0}^{u+4} \frac{1}{4} u \sqrt{v} \, dv \, du.$$

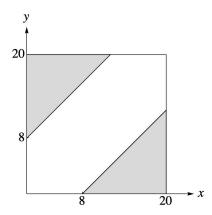
6. (15 pts) Libra and Leo decide to meet at Fiske Planetarium to see a show. Suppose each independently arrives at a time uniformly distributed between 6:40 and 7:00 pm. Evaluate a double integral to find the probability that the first to arrive has to wait longer than 8 minutes.

Solution: Let X and Y be independent random variables representing the time past 6:40 pm that Libra and Leo arrive, respectively. Each variable X and Y is uniformly distributed over (0,20). The joint probability density function of X and Y is

$$f(x,y) = \begin{cases} \frac{1}{400} & \text{if } 0 < x < 20, \ 0 < y < 20\\ 0 & \text{otherwise.} \end{cases}$$

The desired probability can be calculated using symmetry as follows:

$$\begin{split} P(|X-Y|>8) &= 2P(X-Y>8) \\ &= 2\int_8^{20} \int_0^{x-8} \frac{1}{400} \, dy \, dx \\ &= 2\int_8^{20} \frac{1}{400} (x-8) \, dx \\ &= \frac{1}{200} \left[\frac{x^2}{2} - 8x \right]_8^{20} \\ &= \frac{1}{200} \left((200 - 160) - (32 - 64) \right) = \frac{72}{200} = \frac{9}{25}. \end{split}$$



Alternate Solution:

$$P(|X - Y| > 8) = 2P(Y - X > 8) = 2\int_0^{12} \int_{x+8}^{20} \frac{1}{400} \, dy \, dx.$$