
Python for Math and Stat Fall 2024
Exam 2

Assume that all necessary packages have been imported.

1. (15 pts) For the following 3 problems, write down what each code block would display if executed in a
Jupyter cell. If the code generates an error or infinite loop, write Error.

(a) primes = [2, 3, 5, 7, 11]
list(zip(primes[:3], primes[2:]))

(b) m = 2
while m < 20:

print(f’#{m}’, end=’ ’)
m *= 3

(c) def func(n):
print(n, end=’ ’)
if n < 5:

return n
else:

return func(n-3) + n

func(10)

Solution:

(a) [(2, 5), (3, 7), (5, 11)]

(b) #2 #6 #18

(c) 10 7 4
21



2. (23 pts) The list below has 12 tuples, arranged in month order, with each tuple containing the name and
number of days for a month of the year. (Assume the ’Feb’ tuple has either 28 or 29 days, depending
on the year.)

months = [(’Jan’, 31), ..., (’Nov’, 30), (’Dec’, 31)]

(a) Write a function date to tuple(strdate) that takes a date in mm/dd/yy string format and
returns the corresponding (month, day, year) tuple of ints. The 2-digit year yy should be
converted into a 4-digit integer 20yy.

Example: date to tuple(’07/04/24’) returns (7, 4, 2024).

(b) Write a function day of year(strdate, months) that takes a date in mm/dd/yy string
format and calculates the number of days since the start of the year. It calls date to tuple().
Assume the list months contains the information shown above.

Example: day of year(’02/01/24’, months) returns 32 because Feb 1 is the 32nd day
of the year.

(c) Write code to create a dictionary called month dict, using the information in the list months.
Each key is a month name and each value is a tuple containing the number of the month (1-12) and
number of days in the month:

{’Jan’: (1, 31), ..., ’Nov’: (11, 30), ’Dec’: (12, 31) }.

Solution:

(a) def date_to_tuple(strdate):
mm, dd, yy = strdate.split(’/’)
return (int(mm), int(dd), 2000 + int(yy))

(b) def day_of_year(strdate, months):
month, day, year = date_to_tuple(strdate)
dayct = 0

for m in range(month-1):
dayct += months[m][1]

return dayct + day

(c) month_dict = {}
for index, tup in enumerate(months):

name, numdays = tup
month_dict[name] = (index+1, numdays)

OR

month_dict = {}
for i in range(len(months)):

name, numdays = months[i]
month_dict[name] = (i+1, numdays)

OR



month_dict = {tup[0]:
(index+1, tup[1]) for index, tup in enumerate(months)}

OR

month_dict = {months[i][0]:
(i+1, months[i][1]) for i in range(12)}

3. (12 pts)

(a) Write a function mtn(pos, size) which displays a single “mountain” with lower left corner at
pos, an (x, y) tuple. The width and height of the mountain are equal to the given size.

Example: mtn((3, 1), 2) produces the following result.

(b) Write a function mtn range(pos, size, mtn ct)which displays mtn ct side-by-side “moun-
tains” at the given pos, alternating between mountains of the given size and larger mountains
twice the size. The function should call mtn(). (Use the default colors and aspect ratio.)

Examples: If pos=(3, 1) and size=2, the results for mtn ct=3 and mtn ct=4 are shown.

Solution:

(a) def mtn(pos, size):
x, y = pos
xvals = [x, x + 0.5*size, x + size]
yvals = [y, y + size, y]
plt.plot(xvals, yvals)

OR

def mtn(pos, size):
xvals = [pos[0], pos[0] + 0.5*size, pos[0] + size]
yvals = [pos[1], pos[1] + size, pos[1]]
plt.plot(xvals, yvals)



(b) def mtn_range(pos, size, mtn_ct):
x, y = pos
for i in range(mtn_ct):

if i % 2 == 0:
mtn((x, y), size)
x += size

else:
mtn((x, y), 2*size)
x += 2*size

OR

def mtn_range(pos, size, mtn_ct):
x, y = pos
for i in range(mtn_ct):

width = size if i % 2 == 0 else 2*size
mtn((x, y), width)
x += width


