
Python for Math and Stat Fall 2023
Final Exam

Assume that all necessary packages have been imported.

1. (15 pts) For the following 4 problems, write down what each code block would display if executed in
a Jupyter cell. If the code generates an error or infinite loop, write Error. Assume

arr = np.array([[10, 1, 9, 7, 12],
[3, 16, 5, 8, 9]])

(a) arr[1, 4:0:-2]

(b) arr[arr > 9]

(c) kvals = {k: k*k for k in range(10)}
kvals[kvals[2]]

(d) def func(nums):
print(nums, end=’ ’)
if len(nums) == 1:

return 10
else:

return func(nums[1:]) + 4

vals = [-5, 6, 2]
func(vals)

Solution:

(a) array([9, 5])

(b) array([10, 12, 16])

(c) 16

(d) [-5, 6, 2] [6, 2] [2]
18

2. (8 pts) Write a function plot digits(num) that plots the digits of a positive integer as a bar chart.
It does not return a value. Use try except to catch invalid input, in which case no plot is created;
Error is displayed instead.

Examples:
plot digits(’abc’) displays Error.
plot digits(929791) produces the following result:

Solution:

def plot_digits(num):
try:

digits = [int(d) for d in str(num)]
plt.bar(range(len(digits)), digits)
plt.show()

except:
print(’ERROR’)

3. (10 pts) To check for errors when scanning
or manually entering product bar codes, an
extra check digit is included.

Here is a procedure for calculating the check digit for
an integer code: (ex: 15694)

• Add every other digit in the code, starting with
the first digit. (ex: 1 5 6 9 4: 1 + 6 + 4 = 11)

• Add every other digit in the code, starting with
the second digit. (ex: 1 5 6 9 4 : 5 + 9 = 14)

• Add the second sum to 3 times the first sum.
(ex: 14 + 3 · 11 = 47)

• The units digit of the result is the check digit.
(ex: 7)

Write a function check digit(code) that takes an integer code greater than 9 and returns its
check digit as an int. For example, check digit(15694) returns 7.

Solution:

def check_digit(code):
strcode = str(code)

sum0 = sum(int(d) for d in strcode[0::2])
sum1 = sum(int(d) for d in strcode[1::2])

total = sum1 + 3*sum0

return total % 10

4. (10 pts) Consider the polynomial

P (x) = 1 + 2x+ 3x2 + 4x3 + · · ·+ nxn−1.

Write a function poly eval(x, n) that calculates the value of P (x) given values for x and posi-
tive integer n. Use numpy features (such as arange and vectorization). Do not include a loop.

Example: poly eval(2, 3) returns 17 which equals 1 + 2(2) + 3(2)2.

Solution:

def poly_eval(x, n):
exponents = np.arange(n)
coeffs = exponents + 1
return np.sum(coeffs * x**exponents)

5. (12 pts) The DataFrame dfcocoa, shown below, contains information about various cocoa powder
products. Each row provides the name, weight (in ounces), and price (in dollars) for a distinct product.

Write code to do the following:

(a) Add a new Nestle product to the DataFrame with a weight of 8 ounces and a price of 2.75
dollars.

(b) Add a new column to the DataFrame called UnitPrice which equals the price per ounce for
each product.

(c) Select the names of all products with a UnitPrice greater than the unit price for Hersheys
(which is a product in dfcocoa). The result should be a pandas index or a list of strings.

(d) One of the products has the lowest unit price. Identify the name of that product as a string.

Solution:

(a) dfcocoa.loc[’Nestle’] = [8, 2.78]

(b) dfcocoa[’UnitPrice’] = dfcocoa.Price / dfcocoa.Ounces

(c) dfcocoa[dfcocoa.UnitPrice > dfcocoa.UnitPrice[’Hersheys’]].index

(d) dfcocoa.UnitPrice.idxmin()

6. (20 pts) Create a class called Coin. Each instance of the class represents a coin with one attribute:

• prob H: probability of flipping a head. Assume that prob H is a value between 0 and 1. Set
the default value to 0.5.

and these methods:

• flip(): returns ’H’ or ’T’ given probability prob H. (For example, if prob H equals 0.2,
then out of 100 flips, ’H’ will appear about 20 times.)

• flip until(outcome): simulates the flipping of the coin, printing the results in a row, until
the desired outcome appears. Return the number of flips. Assume that outcome is either ’H’
or ’T’. This method should call flip().
Example: flip until(’T’) might print HHHHT and return 5.

Solution:

class Coin:
def __init__(self, prob_H=0.5):

self.prob_H = prob_H

def flip(self):
if random.random() < self.prob_H:

return ’H’
else:

return ’T’

def flip_until(self, outcome):
nflip = 0
result = ’’

while result != outcome:
result = self.flip()
print(result, end=’’)
nflip += 1

return nflip

