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Work out the following problems, fully simplifying your answers.

1. (30 pts) Evaluate the following integrals.

(a)
∫ π/2

0
sin2(θ) cos3(θ) dθ (b)

∫ ∞

2

2
(1 + x)(1 − x) dx

2. (15 pts) Solve the following initial value problem for y as a function of x.{
dy
dx = −2xy

y(0) = 2

3. (20 pts) Determine the radius and interval of convergence for the following power series.

∞∑
n=0

10n(x − 5)n

n!

4. (25 pts) Given the function f(x) = sin(x) cos(x), answer the following:
(a) Using any method you’d like, compute T3(x) for the Maclaurin series of f(x) = sin(x) cos(x).
(b) Assuming

∣∣f (4)(x)
∣∣ ≤ 8 for all values of x, find an error bound in using T3(x) to approximate f(−0.1).

5. (30 pts) Consider the parametric equations given below.{
x = t2

y = sin t
, 0 ≤ t ≤ π

Answer the following:
(a) Setup and evaluate an integral with respect to t to find the area between the curve and the x-axis.
(b) Assuming t ≥ 0, eliminate the variable t from the parametric equations to find an equation of the curve

in terms of x and y.

6. (30 pts) Consider the polar curve defined by r = sin(5θ) for 0 ≤ θ ≤ π (plotted below).

x

y

Answer the following:
(a) Setup, but do not evaluate, an integral to find the total length of the curve r = sin(5θ).
(b) Evaluate an integral to the find the area enclosed by one petal of the curve r = sin(5θ).

FORMULAS ON BACK



APPM 1360
EXAM

APPM 1360
EXAM

APPM 1360
EXAM

APPM 1360 Final Exam Summer 2024

Trigonometric Identities

cos2 x = 1
2(1 + cos 2x) sin2 x = 1

2(1 − cos 2x) sin 2x = 2 sin x cos x cos 2x = cos2 x − sin2 x

Common Maclaurin Series

1
1 − x

=
∞∑

n=0
xn = 1 + x + x2 + x3 + · · · R = 1

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + · · · R = ∞

sin x =
∞∑

n=0
(−1)n x2n+1

(2n + 1)! = x − x3

3! + x5

5! − x7

7! + · · · R = ∞

cos x =
∞∑

n=0
(−1)n x2n

(2n)! = 1 − x2

2! + x4

4! − x6

6! + · · · R = ∞

tan−1 x =
∞∑

n=0
(−1)n x2n+1

2n + 1 = x − x3

3 + x5

5 − x7

7 + · · · R = 1

ln(1 + x) =
∞∑

n=1
(−1)n−1 xn

n
= x − x2

2 + x3

3 − x4

4 + · · · R = 1

(1 + x)k =
∞∑

n=0

(
k

n

)
xn = 1 + kx + k(k − 1)

2! x2 + k(k − 1)(k − 2)
3! x3 + · · · R = 1


