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Work out the following problems and simplify your answers.

1. (30 pts) Evaluate the following integrals.

(a)
∫

t sin(3t) dt (b)
∫ 1

−1

1
x

dx

Solution:
(a) Using integration by parts, with u = t and dv = sin(3t) dt, we have∫

t sin(3t) dt = −1
3 t cos(3t) + 1

3

∫
cos(3t) dt = −1

3 t cos(3t) + 1
9 sin(3t) + C.

(b) There is an asymptote in 1/x at x = 0 meaning this integral is improper. With this in mind, we have∫ 1

−1

1
x

dx =
∫ 0

−1

1
x

dx +
∫ 1

0

1
x

dx.

Evaluating the first integral, we have∫ 0

−1

1
x

dx = lim
t→0−

∫ t

−1

1
x

dx = lim
t→0−

ln |x|
∣∣∣∣t

−1
= lim

t→0−
ln |t| = −∞

which diverges. Since the first integral diverges, the integral as a whole diverges.



APPM 1360
EXAM

APPM 1360
EXAM

APPM 1360
EXAM

APPM 1360 Final Exam Summer 2023

2. (20 pts) Consider the sequence {an}∞
n=1 where an = n + 1

n
− n + 2

n + 1.

(a) Does the sequence {an} converge? If so, find its limit. If not, explain why not.

(b) Using the sequence {an} given in the problem, does
∞∑

n=1
an converge? If so, find its sum. If not, explain

why not.
Solution:
(a) To test if the sequence converges, we will try to take its limit.

lim
n→∞

an = lim
n→∞

n + 1
n

− n + 2
n + 1 = 1

1 − 1
1 = 0.

Since the limit is finite, the sequence converges.
(b) The sequence appears to telescoping so let’s try that approach. The partial sums are given by

sn =
n∑

i=1

i + 1
i

− i + 2
i + 1 =

(
2
1 − 3

2

)
+

(
3
2 − 4

3

)
+

(
4
3 − 5

4

)
+ · · · +

(
n + 1

n
− n + 2

n + 1

)
= 2

1 −
�
�
�3

2 + 3
2 −

�
�
�4

3 + 4
3 −

��������5
4 + · · · + n + 1

n
− n + 2

n + 1

= 2 − n + 2
n + 1 .

Taking the limit of our partial sum yields

lim
n→∞

sn = lim
n→∞

2 − n + 2
n + 1 = 2 − 1 = 1.

Hence, the series converges and has a sum of 1.
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3. (20 pts) The Maclaurin series for sinc x = sin x

x
is

∞∑
n=0

(−1)n x2n

(2n + 1)! .

(a) Find the radius of convergence of the series.
(b) Using the series, what is the value of sinc(0)?

(c) With the series above in mind, compute the sum of
∞∑

n=0
(−1)n π2n

(2n + 1)! 62n
.

Solution:
(a) To find the radius of convergence, we apply the ratio test to get∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ (−1)n+1x2n+2

(2n + 3)!
(2n + 1)!
(−1)nx2n

∣∣∣∣ =
∣∣∣∣ x2x2n

(2n + 3)(2n + 2)(2n + 1)!
(2n + 1)!

x2n

∣∣∣∣ =
∣∣∣∣ x2

(2n + 3)(2n + 2)

∣∣∣∣
meaning

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ x2

(2n + 3)(2n + 2)

∣∣∣∣ = 0

implying the radius of convergence is R = ∞.

(b) Plugging in x = 0 into our series gives

sinc 0 =
∞∑

n=0
(−1)n 02n

(2n + 1)! = 1 + 0 + 0 + 0 + · · · = 1.

(c) To use our series for sinc x, we first write

∞∑
n=0

(−1)n π2n

(2n + 1)! 62n
=

∞∑
n=0

(−1)n (π/6)2n

(2n + 1)! .

Hence, the series is just the series for sinc x evaluated at x = π/6. So

∞∑
n=0

(−1)n π2n

(2n + 1)! 62n
= sinc π

6 = sin(π/6)
π/6 = 3

π
.
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4. (25 pts) The following problems are related.
(a) Find the 3rd degree Taylor polynomial T3(x) centered at a = 1 of ln x.

(b) Estimate the error in using T3 to approximate ln x at x = 3
2.

Solution:
(a) To start, we will compute a table of the needed derivatives and function values as

n f (n)(x) f (n)(1) f(n)(1)
n!

0 ln x 0 0
1 1/x 1 1
2 −1/x2 −1 − 1

2
3 2/x3 2 1

3

Using the last column of the table, we have

T3(x) = 0 + 1(x − 1) − 1
2(x − 1)2 + 1

3(x − 1)3

= (x − 1) − 1
2(x − 1)2 + 1

3(x − 1)3.

(b) To compute the error in T3(3/2), we need f (4)(z) which is given by

f (4)(z) = − 6
z4 .

Then using the Taylor Remainder Theorem, we know there exists some z between 1 and 3/2 such that

|f(3/2) − T3(3/2)| =
∣∣∣∣f (4)(z)

4! (3/2 − 1)4
∣∣∣∣ =

∣∣∣∣−6/z4

24 (1/2)4
∣∣∣∣ = 1

64z4 .

Since 1/z4 is decreasing, it is maximized at z = 1. Plugging this in gives our error estimate as

|f(3/2) − T3(3/2)| = 1
64z4 ≤ 1

64 .
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5. (25 pts) Suppose the trajectory of a projectile launched from a cannon is given by the parametric curve

x = 10 − 10e−t, y = 11 − 11e−t − t, t ≥ 0

where t is the time from launch. Setup, but do not evaluate, integrals to find the following:
(a) The distance the projectile has traveled from t = 0 to t = 10.
(b) The area between the trajectory and the x-axis from t = 1 to t = 5.

Solution: It’s not necessary, but if we plot the trajectory, we get

2 4 6 8 10
x

2

4

6

8
y

(a) To compute the distance traveled by the projectile, we just need to setup the arc length integral of the
projectile. To start, we compute our needed derivatives as

x′ = 10e−t, y′ = 11e−t − 1.

Next, we can compute ds as

ds =
√

(x′)2 + (y′)2 =
√

(10e−t)2 + (11e−t − 1)2 dt =
√

221e−2t − 22e−t + 1 dt.

Lastly, we can compute the distance as

L =
∫ 10

0
ds =

∫ 10

0

√
221e−2t − 22e−t + 1 dt.

(b) To find the area between the trajectory and the x-axis, we can use the parametric area formula

A =
∫ b

a

yx′ dt =
∫ 5

1
(11 − 11e−t − t)10e−t dt.
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6. (30 pts) Consider the two polar equations r = 4 cos θ and r = 2. Answer the following:
(a) Sketch both polar curves and label their intersections.
(b) Find the area of the region inside of r = 4 cos θ and outside of r = 2.

Solution:
(a) r = 4 cos θ is given by the circle of diameter 4 opening to the right and r = 2 is just the circle of radius 2

centered at the origin. We can find the our intersection points by solving

4 cos θ = 2 =⇒ cos θ = 1
2

which gives θ = − π
3 and θ = π

3 . Putting everything together, we get the plot

(b) From our graph in part (a), we can compute the area as

A =
∫ π/3

−π/3

1
2(4 cos θ)2 − 1

222 dθ

=
∫ π/3

0
(4 cos θ)2 − 22 dθ

=
∫ π/3

0
16 cos2 θ − 4 dθ

=
∫ π/3

0
161

2(1 + cos 2θ) − 4 dθ

=
∫ π/3

0
4 + 8 cos 2θ

= 4θ + 4 sin 2θ

∣∣∣∣π/3

0

= 4π

3 + 4 sin 2π

3

= 4π

3 + 2
√

3.


