Answer the following problems and simplify your answers.

1. (18pts) Find the explicit solution to the following initial value problem:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} z}{\mathrm{~d} t}-e^{t+z}=0 \\
z(0)=\ln 2
\end{array}\right.
$$

Solution: Using separation of variables, we have

$$
\int e^{-z} \mathrm{~d} z=\int e^{t} \mathrm{~d} t \Longrightarrow-e^{-z}=e^{t}+C^{*}
$$

Solving for z yields

$$
z=-\ln \left(C-e^{t}\right), \quad C=-C^{*} .
$$

Applying initial conditions, we have

$$
\ln 2=-\ln (C-1) \Longrightarrow C=\frac{3}{2}
$$

Then, putting everything together, we have

$$
z=-\ln \left(\frac{3}{2}-e^{t}\right)
$$

2. (18 pts) Conisder the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ on the interval $\frac{1}{2} \leq x \leq 1$.
(a) Find the area of the surface obtained by rotating the curve about the y-axis.
(b) Set up, but do not evaluate, the integral with respect to x to find the area of the surface rotated about $y=-2$.

Solution:

(a) First, we compute

$$
y^{\prime}=\frac{x^{2}}{2}-\frac{1}{2 x^{2}} .
$$

Next, we can compute our length element as

$$
\begin{aligned}
\mathrm{d} s=\sqrt{1+\left(y^{\prime}\right)^{2}} \mathrm{~d} x & =\sqrt{1+\left(\frac{x^{2}}{2}-\frac{1}{2 x^{2}}\right)^{2}} \mathrm{~d} x \\
& =\sqrt{1+\left(\frac{x^{2}}{2}\right)^{2}-\frac{1}{2}+\left(\frac{1}{2 x^{2}}\right)^{2}} \mathrm{~d} x \\
& =\sqrt{\left(\frac{x^{2}}{2}\right)^{2}+\frac{1}{2}+\left(\frac{1}{2 x^{2}}\right)^{2}} \mathrm{~d} x \\
& =\sqrt{\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right)^{2}} \mathrm{~d} x \\
& =\frac{x^{2}}{2}+\frac{1}{2 x^{2}} \mathrm{~d} x
\end{aligned}
$$

Since we are rotating the curve about the y-axis, the radius is $r=x$. Then the area is given by

$$
\begin{aligned}
A=\int_{1 / 2}^{1} 2 \pi r \mathrm{~d} s & =\int_{1 / 2}^{1} 2 \pi x\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right) \mathrm{d} x \\
& =\pi \int_{1 / 2}^{1} x^{3}+\frac{1}{x} \mathrm{~d} x \\
& =\left.\pi\left(\frac{1}{4} x^{4}+\ln |x|\right)\right|_{1 / 2} ^{1} \\
& =\pi\left(\frac{1}{4}+\ln (1)-\frac{1}{64}-\ln (1 / 2)\right) \\
& =\pi\left(\frac{15}{64}+\ln 2\right) .
\end{aligned}
$$

(b) The setup will be the same as in part (a) but this time, the radius will be

$$
r=y-(-2)=\frac{x^{3}}{6}+\frac{1}{2 x}+2
$$

Then, the area integral is setup as

$$
A=\int_{1 / 2}^{1} 2 \pi r \mathrm{~d} s=\int_{1 / 2}^{1} 2 \pi\left(\frac{x^{3}}{6}+\frac{1}{2 x}+2\right)\left(\frac{x^{2}}{2}+\frac{1}{2 x^{2}}\right) \mathrm{d} x .
$$

3. (40 pts) Consider the region \mathcal{R} bounded by $y=\frac{1}{2} x^{2}$ and $y=\sqrt{2 x}$.
(a) Sketch and shade \mathcal{R}, labeling the axes, intersections points, and curves.
(b) Set up, but do not evaluate, integrals to find the following quanities with respect to $d x$:
i. The volume of the solid generated by rotating \mathcal{R} about $x=-1$.
ii. The volume of the solid generated by rotating \mathcal{R} about $y=2$.
iii. The volume with a base of \mathcal{R} and rectangular cross-sections perpendicular to the x-axis that have a height 3 times the length of their base.
(c) Assuming a uniform density ρ, find the y-coordinate of the centroid of \mathcal{R}. Fully simplify your answer.

Solution:

(a) Graphing the region yields

(b) i. To rotate \mathcal{R} about $x=-1$ using $\mathrm{d} x$, we need cylindrical shells. In this case, the radius and height are given by

$$
r=x-(-1)=x+1, \quad h=\sqrt{2 x}-\frac{x^{2}}{2}
$$

respectively. Using these values, the volume can be computed as

$$
V=\int_{0}^{2} 2 \pi r h \mathrm{~d} x=\int_{0}^{2} 2 \pi(x+1)\left(\sqrt{2 x}-\frac{x^{2}}{2}\right) \mathrm{d} x
$$

ii. To rotate \mathcal{R} about $y=2$ using $\mathrm{d} x$, we need to use the washer method. The outer radius and inner radius are given by

$$
R=2-\frac{x^{2}}{2}, \quad r=2-\sqrt{2 x}
$$

respectively. Plugging these values in the washer method formula gives our volume as

$$
V=\int_{0}^{2} \pi\left(R^{2}-r^{2}\right) \mathrm{d} x=\int_{0}^{2} \pi\left(\left(2-\frac{x^{2}}{2}\right)^{2}-(2-\sqrt{2 x})^{2}\right) \mathrm{d} x .
$$

iii. The base length of each rectangle is given by the vertical distance in \mathcal{R}. In this case, the base

$$
b=\sqrt{2 x}-\frac{x^{2}}{2} .
$$

Then, the height of the region is $h=3 b$ meaning the area of each rectangle is

$$
A(x)=b \cdot h=3\left(\sqrt{2 x}-\frac{x^{2}}{2}\right)^{2} .
$$

With this area function, our volume can be computed as

$$
V=\int_{0}^{2} A(x) \mathrm{d} x=\int_{0}^{2} 3\left(\sqrt{2 x}-\frac{x^{2}}{2}\right)^{2} \mathrm{~d} x
$$

(c) To compute the y-coordinate of the centroid, we need the total mass m of \mathcal{R} and the moment of \mathcal{R} about x-axis. Computing our quantities, we have

$$
m=\rho \int_{0}^{2} \sqrt{2 x}-\frac{x^{2}}{2} \mathrm{~d} x=\left.\rho\left(\frac{2 \sqrt{2}}{3} x^{3 / 2}-\frac{x^{3}}{6}\right)\right|_{0} ^{2}=\rho\left(\frac{2 \sqrt{2}}{3} 2^{3 / 2}-\frac{2^{3}}{6}\right)=\rho \frac{4}{3}
$$

and

$$
M_{x}=\rho \int_{0}^{2} \frac{1}{2}\left((\sqrt{2 x})^{2}-\left(\frac{x^{2}}{2}\right)^{2}\right) \mathrm{d} x=\rho \int_{0}^{2} \frac{1}{2}\left(2 x-\frac{x^{4}}{4}\right) \mathrm{d} x=\left.\rho \frac{1}{2}\left(x^{2}-\frac{x^{5}}{20}\right)\right|_{0} ^{2}=\rho \frac{6}{5}
$$

Then, the y-coordinate is given by

$$
\bar{y}=\frac{M_{x}}{m}=\frac{\rho \cdot 6 / 5}{\rho \cdot 4 / 3}=\frac{9}{10} .
$$

Not that it's needed but by symmetry of \mathcal{R}, we will also have $\bar{x}=\frac{9}{10}$.
4. (24 pts) Determine whether or not the following sequences converge or diverge. Justify your answer! If the sequence converges, find its limit.
(a) $\left\{\frac{(-1)^{n+1} n}{n^{3 / 2}+\sqrt{n}}\right\}$
(b) $\left\{\ln \left(2 n^{2}+1\right)-2 \ln (n+1)\right\}$
(c) $\left\{1+4^{n} \cdot 3^{2-n}\right\}$

Solution:

(a) First, we compute

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} n}{n^{3 / 2}+\sqrt{n}}\right|=\lim _{n \rightarrow \infty} \frac{n}{n^{3 / 2}+\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{1 / \sqrt{n}}{1+1 / n}=\frac{0}{1+0}=0
$$

Since the absolute value of the sequence converges to zero,

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n+1} n}{n^{3 / 2}+\sqrt{n}}=0
$$

Finally, since the limit exists and is finite, the sequence converges.
(b) Using log rules and continuity, we can compute our limit as

$$
\lim _{n \rightarrow \infty}\left(\ln \left(2 n^{2}+1\right)-2 \ln (n+1)\right)=\lim _{n \rightarrow \infty} \ln \frac{2 n^{2}+1}{(n+1)^{2}}=\ln \lim _{n \rightarrow \infty} \frac{2+1 / n^{2}}{(1+1 / n)^{2}}=\ln 2 .
$$

Since the limit exists and is finite, the sequence converges.
(c) A little algebra yields

$$
1+4^{n} \cdot 3^{2-n}=1+3^{2} \frac{4^{n}}{3^{n}}=1+9\left(\frac{4}{3}\right)^{n}
$$

The last term in our sequence is geometric with $r=4 / 3$. Since $4 / 3>1$,

$$
\left(\frac{4}{3}\right)^{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

meaning the original sequence diverges to infinity.

