Answer the following problems and simplify your answers.

1. (18pts) Find the **explicit solution** to the following initial value problem:

$$\begin{cases} \frac{\mathrm{d}z}{\mathrm{d}t} - e^{t+z} = 0\\ z(0) = \ln 2 \end{cases}$$

- 2. (18 pts) Conisder the curve $y = \frac{x^3}{6} + \frac{1}{2x}$ on the interval $\frac{1}{2} \le x \le 1$.
 - (a) Find the area of the surface obtained by rotating the curve about the y-axis.
 - (b) Set up, **but do not evaluate**, the integral with respect to x to find the area of the surface rotated about y = -2.
- 3. (40 pts) Consider the region \mathcal{R} bounded by $y = \frac{1}{2}x^2$ and $y = \sqrt{2x}$.
 - (a) Sketch and shade \mathcal{R} , labeling the axes, intersections points, and curves.
 - (b) Set up, but do not evaluate, integrals to find the following quanities with respect to dx:
 - i. The volume of the solid generated by rotating \mathcal{R} about x = -1.
 - ii. The volume of the solid generated by rotating \mathcal{R} about y = 2.
 - iii. The volume with a base of \mathcal{R} and rectangular cross-sections perpendicular to the x-axis that have a height 3 times the length of their base.
 - (c) Assuming a uniform density ρ , find the *y*-coordinate of the centroid of \mathcal{R} . Fully simplify your answer.
- 4. (24 pts) Determine whether or not the following sequences converge or diverge. Justify your answer! If the sequence converges, find its limit.

(a)
$$\left\{ \frac{(-1)^{n+1}n}{n^{3/2} + \sqrt{n}} \right\}$$
 (b) $\left\{ \ln(2n^2 + 1) - 2\ln(n+1) \right\}$ (c) $\left\{ 1 + 4^n \cdot 3^{2-n} \right\}$