Answer the following problems and simplify your answers.

1. (18pts) Find the explicit solution to the following initial value problem:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} z}{\mathrm{~d} t}-e^{t+z}=0 \\
z(0)=\ln 2
\end{array}\right.
$$

2. (18 pts) Conisder the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ on the interval $\frac{1}{2} \leq x \leq 1$.
(a) Find the area of the surface obtained by rotating the curve about the y-axis.
(b) Set up, but do not evaluate, the integral with respect to x to find the area of the surface rotated about $y=-2$.
3. (40 pts) Consider the region \mathcal{R} bounded by $y=\frac{1}{2} x^{2}$ and $y=\sqrt{2 x}$.
(a) Sketch and shade \mathcal{R}, labeling the axes, intersections points, and curves.
(b) Set up, but do not evaluate, integrals to find the following quanities with respect to $d x$:
i. The volume of the solid generated by rotating \mathcal{R} about $x=-1$.
ii. The volume of the solid generated by rotating \mathcal{R} about $y=2$.
iii. The volume with a base of \mathcal{R} and rectangular cross-sections perpendicular to the x-axis that have a height 3 times the length of their base.
(c) Assuming a uniform density ρ, find the y-coordinate of the centroid of \mathcal{R}. Fully simplify your answer.
4. (24 pts) Determine whether or not the following sequences converge or diverge. Justify your answer! If the sequence converges, find its limit.
(a) $\left\{\frac{(-1)^{n+1} n}{n^{3 / 2}+\sqrt{n}}\right\}$
(b) $\left\{\ln \left(2 n^{2}+1\right)-2 \ln (n+1)\right\}$
(c) $\left\{1+4^{n} \cdot 3^{2-n}\right\}$
