Answer the following problems and simplify your answers.

1. (36 pts) Evaluate the following integrals. Show all work!
(a) $\int x^{3} \ln x \mathrm{~d} x$
(b) $\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} \mathrm{~d} x$
(c) $\int \frac{2 x}{x^{2}-4 x+3} \mathrm{~d} x$

Solution:

(a) The integral follows via IBP with

$$
u=\ln x \quad v=\frac{1}{4} x^{4} \quad \mathrm{~d} u=\frac{1}{x} \mathrm{~d} x \quad \mathrm{~d} v=x^{3} \mathrm{~d} x .
$$

Then

$$
\begin{aligned}
\int x^{3} \ln x \mathrm{~d} x & \stackrel{\text { IBP }}{=} \frac{1}{4} x^{4} \ln x-\frac{1}{4} \int x^{4} \frac{1}{x} \mathrm{~d} x \\
& =\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}+C .
\end{aligned}
$$

(b) To start, we will use the trig substitution $x=2 \sin (\theta)$ which gives $\mathrm{d} x=\cos \theta \mathrm{d} \theta$ and $\sqrt{4-x^{2}}=$ $2 \cos \theta$. Plugging this substitution in and changing bounds gives

$$
\begin{aligned}
\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} \mathrm{~d} x & =\int_{0}^{\pi / 4} \frac{4 \sin ^{2} \theta}{2 \cos \theta} 2 \cos \theta \mathrm{~d} \theta \\
& \left.=\int_{0}^{\pi / 4} 4 \sin ^{2} \theta \mathrm{~d} \theta\right) \\
& =\int_{0}^{\pi / 4} 2(1-\cos 2 \theta) \mathrm{d} \theta \\
& =\left.2\left(\theta-\frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{\pi / 4} \\
& =\frac{\pi}{2}-1 .
\end{aligned}
$$

(c) We will start by using partial fractions

$$
\frac{2 x}{x^{2}-4 x+3}=\frac{2 x}{(x-1)(x-3)}=\frac{A}{x-1}+\frac{B}{x-3}=\frac{A(x-3)+B(x-1)}{(x-1)(x-3)}
$$

which, after canceling denominators, implies

$$
2 x=A(x-3)+B(x-1)
$$

giving us the system of equations

$$
\begin{array}{r}
A+B=2 \\
-3 A-B=0 .
\end{array}
$$

Solving this system yields $A=-1$ and $B=3$. Plugging back in,

$$
\begin{aligned}
\int \frac{2 x}{x^{2}-4 x+3} \mathrm{~d} x & =\int-\frac{1}{x-1}+\frac{3}{x-3} \mathrm{~d} x \\
& =-\ln |x-1|+3 \ln |x-3|+C .
\end{aligned}
$$

2. (24 pts) With $I=\int_{-\pi / 2}^{\pi / 2} \cos x \mathrm{~d} x$, answer the following. Leave your answer in exact form.
(a) Compute T_{4} to estimate I.
(b) Find a reasonable bound for the error $\left|E_{T}\right|$ of your calculation in part (a).
(c) What is the smallest value of n that will guarantee the error $\left|E_{T}\right|$ is less than 10^{-5} ?

Solution:

(a) To start, we have that $a=-\pi / 2, b=\pi / 2, n=4, f(x)=\cos (x)$, and $\Delta x=\pi / 4$. Computing the necessary x-values and function values gives

i	0	1	2	3	4
x_{i}	$-\pi / 2$	$-\pi / 4$	0	$\pi / 4$	$\pi / 2$
$f\left(x_{i}\right)$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0

Using our table, and the formula for the Trapezoidal rule, we have

$$
T_{4}=\frac{\pi}{8}\left(0+2 \frac{\sqrt{2}}{2}+2 \cdot 1+2 \frac{\sqrt{2}}{2}+0\right)=\frac{\pi}{4}(\sqrt{2}+1) .
$$

(b) To compute a reasonable error bound, we need to compute

$$
f^{\prime}(x)=-\sin (x) \Longrightarrow\left|f^{\prime \prime}(x)\right|=|\cos (x)| \leq 1=K
$$

Using the Trapezoidal error bound, we have

$$
\left|E_{T}\right| \leq \frac{1(\pi)^{3}}{12 \cdot 4^{2}}=\frac{\pi^{3}}{192}
$$

(c) Using the same process as in part (b), we have

$$
\left|E_{T}\right| \leq \frac{\pi^{3}}{12 n^{2}} \leq 10^{-5}
$$

which implies

$$
n \geq \sqrt{\frac{\pi^{3}}{12 \cdot 10^{-5}}}
$$

3. (20 pts) Do the following integrals converge or diverge? Evaluate the convergent integrals.
(a) $\int_{0}^{\infty} \frac{2 e^{2 x}}{1+e^{4 x}} \mathrm{~d} x$
(b) $\int_{2}^{\infty} \frac{1+\cos ^{2} x}{x-1} \mathrm{~d} x$

Solution:

(a) By direct calculation, we have

$$
\begin{aligned}
\int_{0}^{\infty} \frac{2 e^{2 x}}{1+e^{4 x}} \mathrm{~d} x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{2 e^{2} x}{1+\left(e^{2 x}\right)^{2}} \mathrm{~d} x \\
& =\lim _{t \rightarrow \infty} \int_{0}^{e^{2 t}} \frac{1}{1+u^{2}} \mathrm{~d} u \\
& =\left.\lim _{t \rightarrow \infty} \arctan (u)\right|_{1} ^{e^{2 t}} \\
& =\lim _{t \rightarrow \infty} \arctan \left(e^{2 t}\right)-\frac{\pi}{4} \\
& =\frac{\pi}{4} .
\end{aligned}
$$

$$
u=e^{2 x}, \mathrm{~d} u=2 e^{2 x} \mathrm{~d} x
$$

4. (20 pts) Let \mathcal{R} be the region bounded by $y=1-x^{2}$ and $y=x-1$.
(a) Sketch and shade the region \mathcal{R}. Label all axes, curves, and intersection points.
(b) Set up, but do not evaluate, integrals to determine each of the following:
i. The area of \mathcal{R} using integration with respect to x.
ii. The area of \mathcal{R} using integration with respect to y.

Solution:

(a) Graphing our equations, intersection points, and shading \mathcal{R}, gives us

(b) Using the graph, our integrals are as follows:
i. From the graph, our integral is

$$
A=\int_{-2}^{1}\left(1-x^{2}\right)-(x-1) \mathrm{d} x
$$

ii. Rewriting our equations in terms of y gives us $x= \pm \sqrt{1-y}$ and $x=y+1$. Then, using our graph, we can compute the area as

$$
A=\int_{-3}^{0}(y+1)-\left(-\sqrt{1-y)} \mathrm{d} y+\int_{0}^{1} \sqrt{1-y}-(-\sqrt{1-y}) \mathrm{d} y\right.
$$

Trigonometric Identities

$$
\cos ^{2}(x)=\frac{1}{2}(1+\cos 2 x) \quad \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \sin 2 x=2 \sin x \cos x \quad \cos 2 x=\cos ^{2} x-\sin ^{2} x
$$

Inverse Trigonometric Integral Identities

$$
\begin{aligned}
& \int \frac{\mathrm{d} u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+C, u^{2}<a^{2} \\
& \int \frac{\mathrm{~d} u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C \\
& \int \frac{\mathrm{~d} u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}\left(\frac{u}{a}\right)+C, u^{2}>a^{2}
\end{aligned}
$$

Midpoint Rule

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \Delta x\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right], \Delta x=\frac{b-a}{n}, \bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2},\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

Trapezoidal Rule

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right], \Delta x=\frac{b-a}{n},\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}
$$

