1. Determine if the series converge or diverge. Be sure to fully justify your answer and state what test that you used.
(a) (8 points) $\sum_{n=1}^{\infty} \frac{n}{3 n-1}$
(b) (8 points) $\sum_{n=1}^{\infty} \frac{5}{6^{n-1}}$
(c) $\left(8\right.$ points) $\sum_{n=1}^{\infty}\left(\frac{5 n-2 n^{3}}{6 n^{3}+3}\right)^{n}$

Solution: (a) We apply the divergence test to this series:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{n}{3 n-1} \\
& =\lim _{n \rightarrow \infty} \frac{n}{3 n-1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{3-\frac{1}{n}} \\
& =\frac{1}{3} \\
& \neq 0
\end{aligned}
$$

Since the terms of the series converge to $\frac{1}{3}$, the series diverges by the divergence test.
(b) We first note that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{5}{6^{n-1}} & =5 \sum_{n=1}^{\infty} \frac{1}{6^{-1}} \cdot \frac{1}{6^{n}} \\
& =30 \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}
\end{aligned}
$$

This is a geometric series whose common ratio is $r=\frac{1}{6}$. Since $|r|=\left|\frac{1}{6}\right|<$ 1 , this series converges by the geometric series test.
Equivalently, we can apply the ratio test or root test to the series and show that the limit is less than 1 in magnitude.
(c) We apply the root test to this series:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty}\left|\left(\frac{5 n-2 n^{3}}{6 n^{3}+3}\right)^{n}\right|^{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty}\left|\left(\frac{5 n-2 n^{3}}{6 n^{3}+3}\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|\left(\frac{5 n-2 n^{3}}{6 n^{3}+3}\right) \cdot \frac{\frac{1}{n^{3}}}{\frac{1}{n^{3}}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\left(\frac{\frac{5}{n^{2}}-2}{6+\frac{3}{n^{3}}}\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|-\frac{2}{6}\right| \\
& =\frac{1}{3} \\
& <1 .
\end{aligned}
$$

Since $\frac{1}{3}<1$, the series absolutely converges by the root test.
2. Determine the interval of convergence and the radius of convergence for the following power series.
(a) (15 points) $\sum_{n=1}^{\infty} \frac{(-3)^{n} x^{n}}{\sqrt{n+1}}$
(b) (15 points) $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n!}$

Solution: (a) By inspection, we see that the center of this power series is $a=0$. We can apply the ratio test to this series to determine its radius of convergence and interval of convergence:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+1} x^{n+1}}{\sqrt{(n+1)+1}} \cdot \frac{\sqrt{n+1}}{(-3)^{n} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty} 3|x|\left|\frac{\sqrt{n+1}}{\sqrt{n+2}}\right| \\
& =\lim _{n \rightarrow \infty} 3|x|\left|\frac{\sqrt{n+1}}{\sqrt{n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}}\right| \\
& =\lim _{n \rightarrow \infty} 3|x|\left|\frac{\sqrt{1+\frac{1}{\sqrt{n}}}}{\sqrt{1+\frac{2}{\sqrt{n}}}}\right| \\
& =3|x| .
\end{aligned}
$$

For this series to absolutely converge, we require that

$$
\begin{aligned}
3|x|<1 & \Longrightarrow-1<3 x<1 \\
& \Longrightarrow-\frac{1}{3}<x<\frac{1}{3} .
\end{aligned}
$$

From this, we see that the radius of convergence is $R=\frac{1}{3}$ and that the tentative interval of convergence is $I=\left(-\frac{1}{3}, \frac{1}{3}\right)$. We need to also check the behavior of the series at the endpoints of the above tentative interval of convergence:
i. $x=-\frac{1}{3}$

At this endpoint, the series evaluates to

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-3)^{n}\left(-\frac{1}{3}\right)^{n}}{\sqrt{n+1}} & =\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{1}{(n+1)^{\frac{1}{2}}}
\end{aligned}
$$

To determine the convergence of this series, we apply the limit comparison test with the p-series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}
$$

which we know is a divergent p-series since $p=\frac{1}{2}<1$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1)^{\frac{1}{2}}}}{\frac{1}{n^{\frac{1}{2}}}} & =\lim _{n \rightarrow \infty} \frac{n^{\frac{1}{2}}}{(n+1)^{\frac{1}{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{\frac{1}{2}}}{(n+1)^{\frac{1}{2}}} \cdot \frac{\frac{1}{n^{\frac{1}{2}}}}{\frac{1}{n^{\frac{1}{2}}}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{\frac{1}{2}}} \\
& =1 \\
& >0
\end{aligned}
$$

Since this limit is greater than 0 and finite, the original series diverges at $x=-\frac{1}{3}$ by the limit comparison test.
ii. $x=\frac{1}{3}$

At this endpoint, the series evaluates to

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-3)^{n}\left(\frac{1}{3}\right)^{n}}{\sqrt{n+1}} & =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+1)^{\frac{1}{2}}}
\end{aligned}
$$

This is an alternating series, where the positive portion of the terms are given by $b_{n}=\frac{1}{(n+1)^{\frac{1}{2}}}$. We apply the alternating series test to determine the convergence of the series:
A. $b_{n} \geq 0$ for all $n \geq 1$

By inspection, we see that $b_{n} \geq 0$ for all $n \geq 1$.
B. $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence

By looking at the continuous function, $f(x)=\frac{1}{\sqrt{n+1}}$, we see that $f^{\prime}(x)=-\frac{1}{2}(n+1)^{-\frac{3}{2}}$, which implies that f is a decreasing function. Thus, the b_{n} 's are also decreasing.
C. $\lim _{n \rightarrow \infty} b_{n}=0$

We see that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}} \\
& =0
\end{aligned}
$$

Thus, all the conditions of the alternating series test are satisfied, so this is a convergent alternating series.
Thus, the interval of convergence for this series is $\left(-\frac{1}{3}, \frac{1}{3}\right)$.
(b) By inspection, we see that the center of this power series is $a=-2$. We can apply the ratio test to this series to determine its radius of convergence and interval of convergence:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{(n+1)!} \cdot \frac{n!}{(x+2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}|x+2|\left|\frac{1}{n+1}\right| \\
& =|x+2| \lim _{n \rightarrow \infty}\left|\frac{1}{n+1}\right| \\
& =0 .
\end{aligned}
$$

From this, we see that the radius of convergence is $R=\infty$ and the interval of convergence is $I=(-\infty, \infty)$.
3. (a) 10 points) Start with the Maclauren Series for $\frac{1}{1-x}$ to find a power series representation for $\frac{1}{1+2 x^{2}}$. Show all work.
(b) (8 points) Use your answer from part (a) to find its interval of convergence.

Solution:

(a) $\frac{1}{1+2 x^{2}}=\frac{1}{1-\left(-2 x^{2}\right)} \therefore \Longrightarrow$ from the Maclauren Series that
$\frac{1}{1+2 x^{2}}=\sum_{n=0}^{\infty}\left(-2 x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{2 n}$
(b) Since the equality $\frac{1}{1-r}=\sum r^{n}$ is only valid for $|r|<1$, we see that the series converges for $\left|-2 x^{2}\right|<1$, meaning that $|x|<\frac{1}{\sqrt{2}}$ (we could have also seen this using the ratio test). Therefore the interval of convergence is $\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Testing each endpoint ultimately shows that it also diverges at both end points.
4. (12 points) Find the first 4 terms $\left(c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}\right)$ of the Maclauren series for $\cos \left(x+\frac{\pi}{2}\right)$
Solution: The goal here is to find the first 3 derivatives at:
$x=0 \Longrightarrow-\sin \left(\mathrm{x}+\frac{\pi}{2}\right),-\cos \left(x+\frac{\pi}{2}\right), \sin \left(\pi+\frac{\pi}{2}\right)$. The values of the functions at the derivatives at $0,-1,0,1$ and we get $\Longrightarrow 0-x+0+\frac{1}{3!} x^{3}$
5. (a) (10 points) Evaluate $\int_{0}^{0.4} \ln (1+x) d x$ as an infinite series.
(b) (6 points) Estimate the error if you use the first 2 terms of the series in 5 (a) to approximate the value of the definite integral.

Solution: (a) $\int_{0}^{0.4} \ln (1+x) d x=\int_{0}^{0.4} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} d x=\left.\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n+1}}{n(n+1)}\right|_{0} ^{0.4}$
$=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(0.4)^{n+1}}{n^{2}+n}$
(b) The First term at $n=1$ yields $\frac{(0.4)^{2}}{2}$. The second term at $n=2$ yields $\frac{(-0.4)^{3}}{6}$. Adding these two terms together yields, $\frac{(0.4)^{2}}{2}+\frac{(-0.4)^{3}}{6}=\frac{26}{375}$ and at $n=3=\frac{(0.4)^{4}}{12}$

$$
\therefore\left|R_{n}\right|=|S-S n| \leq b_{n+1} \Longrightarrow\left|S-S_{2}\right| \leq b_{3} \Longrightarrow|R n|=\left|S-\frac{26}{375}\right| \leq \frac{(0.4)^{4}}{12}
$$

