1. Let \mathcal{R} be the region bounded by the curve $y=x^{2}$ and $y=x$. The region \mathcal{R} is rotated around the line $x=1$ to form a solid.
(a) (12 points) Set up an integral(s) for the volume of this solid using the Method of Cylindrical Shells. EVALUATE THE INTEGRAL.

SOLUTION:

$$
\int_{0}^{1} 2 \pi\left(x-x^{2}\right)(1-x) d x=\frac{\pi}{6}
$$

(b) (8 points) Set up an integral(s) for the volume of this solid using the Disk/Washer Method. DO NOT EVALUATE THE INTEGRAL.

SOLUTION:

$$
V_{\text {washer }}=\int_{0}^{1} \pi\left[\left(1-y^{2}\right)^{2}-(1-\sqrt{y})^{2}\right] d y
$$

2. (15 points) Consider the region bounded by $y=e^{x^{2}}, x=0, y=0$, and $x=3$. Set up but DO NOT EVALUATE the surface area of the solid obtained by rotating the region about the x-axis.

SOLUTION:

$$
\begin{gathered}
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+f^{\prime}(x)^{2}} d x \\
\text { Surface Area }=2 \pi \int_{0}^{2} e^{x^{2}} \sqrt{1+\left[\frac{d}{d x}\left(e^{x 2}\right)\right]^{2}} d x \\
=2 \pi \int_{0}^{2} e^{x^{2}} \sqrt{1+4 x^{2} e^{2 x^{2}}} d x
\end{gathered}
$$

3. (15 points) Consider the region of uniform density $\rho=1$ bounded above by the function $f(x)=1-x^{2}$ and below by the the function $g(x)=x-1$. Find just the x -coordinate for the centroid of the region.

SOLUTION:

The graphs of the function intersect at $(-2,-3)$ and $(1,0)$, so we integrate from $(-2,1)$.
First, we need to calculate the total mass:

$$
\begin{gathered}
m=\rho \int_{a}^{b}[f(x)-g(x)] d x=\int_{-2}^{1}\left[1-x^{2}-(x-1)\right] d x=\int_{-2}^{1}\left(2-x^{2}-x\right) d x \\
=\left.\left[2 x-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right]\right|_{-2} ^{1}=\left[2-\frac{1}{3}-\frac{1}{2}-\left[-4+\frac{8}{3}-2\right]=\frac{9}{2}\right.
\end{gathered}
$$

Next we compute the moments:

$$
\begin{gathered}
M_{y}=\rho \int_{a}^{b} x([f(x)]-[g(x)] d x \\
=\int_{-2}^{1} \rho x\left[\left(1-x^{2}\right)-(x-1)\right] d x=\frac{-9}{4} \rho \\
\bar{x}=\frac{M_{y}}{m}=\frac{-9}{4} \frac{2}{9}=\frac{-1}{2}
\end{gathered}
$$

4. For each of the following, determine whether the sequence converges or diverges. Explain your work in each case.
(a) (6 points) $a_{n}=\frac{(\ln (n))^{2}}{n}$

SOLUTION:

Consider the function $f(x)=\frac{[\ln (x)]^{2}}{x}$. Then using the L'Hopital's Rule, we obtain

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}}{x} \\
=\lim _{x \rightarrow \infty} \frac{2 \ln (x) \frac{1}{x}}{1} \\
=\lim _{x \rightarrow \infty} \frac{2 \ln (x)}{1}
\end{gathered}
$$

Using the L'Hopital's Rule again, we obtain:

$$
=\lim _{x \rightarrow \infty} \frac{2 \frac{1}{x}}{1}=0
$$

(b) (6 points) $c_{n}=\tan ^{-1}(2 n)$

SOLUTION:

$$
=\lim _{x \rightarrow \infty} \tan ^{-1}(2 x)=\frac{\pi}{2}
$$

. Therefore the sequence $c_{n}=\tan ^{-1}(2 n)$ converges.
(c) (6 points) $a_{n}=5-\frac{3}{n^{2}}$

SOLUTION:

$$
\lim _{n \rightarrow \infty}\left(5-\frac{3}{n^{2}}\right)=5 .
$$

Therefore the sequence converges and its limit is 5 .
(d) (6 points) $b_{n}=\frac{n!}{n^{n}}$

SOLUTION:

If $\frac{a_{n+1}}{a_{n}}<1$ then $a_{n+1}<a_{n}$. Therefore,

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!}{(n+1)^{n+1}} \frac{n^{n}}{n!}=\frac{(n+1)!}{n!} \frac{n^{n}}{(n+1)^{n+1}}=\frac{n+1}{n+1}\left(\frac{n}{n+1}\right)^{n}=\left(\frac{n}{n+1}\right)^{n}<1
$$

Therefore the sequence $b_{n}=\frac{n!}{n^{n}}$ converges. Can also be shown using the squeeze theorem.
5. (12 points) If the work required to stretch a spring 1 ft beyond its natural length is $12 f t-l b$, how much work is needed to stretch it 9 in. beyond its natural length?

SOLUTION:

Hooke's Law tells us that the force to stretch a spring x units beyond its natural length is $f(x)=k x$, where k is a positive constant. The phrase ..." 1 ft beyond its natural length..." tells us x is changing from $0 f t$ to $1 f t$. We also know that $W=\int_{a}^{b} f(x) \mathrm{dx}$. Substituting the given information,

$$
\begin{gathered}
12=\int_{0}^{1} k x \mathrm{dx} \\
12=\left.k\left[\frac{x^{2}}{2}\right]\right|_{0} ^{1} \Longrightarrow k=24
\end{gathered}
$$

So our force function is $f(x)=24 x$, and, for this particular spring, we have $W=\int_{a}^{b} 24 x \mathrm{dx}$. The problem asks "..how much work is needed to stretch 9 in beyond its natural length.." Our integral uses feet as the length unit, so we must realize that $9 \mathrm{in}=\frac{3}{4} \mathrm{ft}$. The work is given by
$W=\int_{0}^{\frac{3}{4}} 24 x \mathrm{dx}=\left(\left.\frac{24 x^{2}}{2}\right|_{0} ^{\frac{3}{4}}\right)=\left(24 \times \frac{\left(\frac{3}{4}\right)^{2}}{2}\right)-\left(24 \times \frac{0^{2}}{2}\right)=\left(24 \times \frac{9}{32}\right)=\frac{27}{4}$
6. (14 points) Solve the differential equation. Leave your final answer in implicit form for y. (Do not solve explicitly for y).

$$
\begin{gathered}
y^{\prime}+\frac{1+y^{3}}{x y^{2}\left(1+x^{2}\right)}=0 \\
\Longrightarrow \frac{d y}{d x}=-\frac{1+y^{3}}{x y^{2}\left(1+x^{2}\right.} y^{2} \\
\frac{y^{2}}{1+y^{3}}=\frac{-d x}{x\left(1+x^{2}\right)} \\
\int \frac{y^{2} d y}{1+y^{3}}=-\int \frac{d x}{x\left(1+x^{2}\right)}
\end{gathered}
$$

LHS: $\quad u=1+y^{3}, d u=3 y^{2} d y \Longrightarrow \frac{1}{3} \int \frac{3 y^{2} d y}{1+y^{3}}=\frac{1}{3} \ln \left(\left|1+y^{3}\right|\right)$
RHS: $\quad \int \frac{d x}{x\left(1+x^{2}\right.} \Longrightarrow$ PFD $\therefore \frac{1}{x\left(1+x^{2}\right)}=\frac{A}{x}+\frac{B x+C}{1+x^{2}}$

$$
\begin{gathered}
\frac{1}{x\left(1+x^{2}\right.}=\frac{A\left(1+x^{2}\right)}{x\left(1+x^{2}\right)}+\frac{(B x+c) x}{x\left(1+x^{2}\right)} \\
1=A\left(1+x^{2}\right)+B x^{2}+C x \\
1=A+A x^{2}+B x^{2}+c x
\end{gathered}
$$

Solving for our coefficients, we obtain $A=1, B=-1, C=0$

$$
\begin{aligned}
& \therefore \int \frac{d x}{x\left(1+x^{2}\right)}=\frac{d x}{x}+\int \frac{-x d x}{1+x^{2}}=\ln (|x|)-\frac{1}{2} \ln \left|1+x^{2}\right|+c \\
& \quad \therefore \frac{1}{3} \ln \left(\left|1+y^{3}\right|\right)=-\ln (|x|)+\frac{1}{2} \ln \left|1+x^{2}\right|+c \\
& \\
& \text { or } \quad \ln \left(\left|1+y^{3}\right|\right)^{\frac{1}{3}}+\ln (|x|)-\ln \left(\left|1+x^{2}\right|\right)^{\frac{1}{2}}=c
\end{aligned}
$$

END -

