1. Let \mathcal{R} be the region bounded by $y=2-x$ and $y=x^{2}$
(a) (5 points) Sketch the region. Be sure to label all axes, curves, and intersection points.

SOLUTION:

Figure 1: Bounded Area Region
(b) (7 points) Set up the dx integral(s) (integral(s) with respect to x) which, if evaluated, would give the area of the region. DO NOT EVALUATE.

SOLUTION:

$$
\text { Area }=\int_{-2}^{1}\left(2-x-x^{2}\right) d x
$$

(c) (7 points) Set up the dy integral(s) (integral(s) with respect to y) which, if evaluated, would give the area of the region. DO NOT EVALUATE.

SOLUTION:

$$
\left.A=\int_{0}^{1} 2 \sqrt{y} d y+\int_{1}^{4}(2-y)-\sqrt{(} y\right) d y
$$

(d) (5 points) Find the area of the region \mathcal{R} from either (b) or (c).

SOLUTION:

Evaluation of either (b) or (c) will yield a result of $\frac{9}{2}$
2. Consider the curve $y=\sin (x)$.
(a) (8 points) Use the Midpoint Rule with $n=4$ sub-intervals to estimate the integral of this curve from $x=0$ to $x=\pi$.

SOLUTION:

Here, we know that $n=4, a=0$, and $b=\pi$. Thus, we can say
$\Delta x=\frac{(b-a)}{n}=\frac{\pi}{4}$. We now divide the interval $[0,4]$ into $n=4$ subintervals and of the length $\Delta x=\frac{\pi}{4}$ with the following endpoints: $a=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi=b$.
Now we just evaluate the function at the midpoints of the sub-intervals.
$f\left(\frac{x_{0}+x_{1}}{2}\right)=f\left(\frac{0+\frac{\pi}{4}}{2}\right)=f\left(\frac{\pi}{8}\right)$
$f\left(\frac{x_{1}+x_{2}}{2}\right)=f\left(\frac{\frac{\pi}{4}+\frac{\pi}{2}}{2}\right)=f\left(\frac{3 \pi}{8}\right)$
$f\left(\frac{x_{2}+x_{3}}{2}\right)=f\left(\frac{\frac{\pi}{2}+\frac{3 \pi}{4}}{\frac{3 \pi}{2}}\right)=f\left(\frac{5 \pi}{8}\right)$
$f\left(\frac{x_{3}+x_{4}}{2}\right)=f\left(\frac{\frac{3 \pi}{4}+\pi}{2}\right)=f\left(\frac{7 \pi}{8}\right)$
Therefore $M_{4}=\frac{\pi}{4}\left[\sin \left(\frac{\pi}{8}\right)+\sin \left(\frac{3 \pi}{8}\right)+\sin \left(\frac{5 \pi}{8}\right)+\sin \left(\frac{7 \pi}{8}\right)\right]$
(b) (8 points) Estimate the error in the calculation from part (a)

SOLUTION:

To estimate the error, we can do it with the bounding formula,

$$
\left|E_{M}\right| \leq \frac{k(b-a)^{3}}{24 n^{2}}
$$

where k is the maximum value of $\left|\frac{d^{2} y}{d x^{2}}\right|$ on $x \in[0, \pi]$.

$$
\begin{aligned}
& \therefore\left|E_{M}\right| \leq \frac{k(b-a)^{3}}{24 n^{2}} \\
& =\frac{k \cdot \pi^{3}}{24 \cdot 4^{2}} \text { we can find } k \text { now, } \frac{d^{2} y}{d x^{2}}=-\sin (x) \\
& \Longrightarrow k=\max _{x \in[0, \pi]}|-\sin (x)|=1, \text { So now, we have }\left|E_{M}\right| \leq \frac{k \cdot \pi^{3}}{24 \cdot 4^{2}}=\frac{1 \cdot \pi^{3}}{24 \cdot 4^{2}} \\
& =\frac{\pi^{3}}{4^{2} \cdot 24}=\frac{\pi^{3}}{384}
\end{aligned}
$$

(c) (4 points) Now find the exact error in your estimate from part (a).

SOLUTION:

Exact Error $=\int_{0}^{\pi} \sin (x) d x-\mathrm{M}_{4}=2-M_{4}$
3. (a) (10 points) Evaluate the following integral $\int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x$ and determine whether it converges or diverges.

SOLUTION:

This function is undefined when $x=1$, so we need to split the problem into 2 integrals.

$$
\begin{aligned}
& \int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x=\int_{0}^{1} \frac{1}{(x-1)^{2 / 3}} d x+\int_{1}^{3} \frac{1}{(x-1)^{2 / 3}} d x \\
& \Longrightarrow \lim _{b \rightarrow 1} \int_{0}^{b} \frac{1}{(x-1)^{2 / 3}} d x=3 \\
& \Longrightarrow \lim _{c \rightarrow 1} \int_{c}^{3} \frac{1}{(x-1)^{2 / 3}} d x=3 \cdot 2^{2 / 3}
\end{aligned}
$$

The two integrals on the right hand side both converge and add up to $3\left[1+2^{\frac{2}{3}}\right]$
(b) (10 points) Determine whether the following integral converges or diverges.

$$
\int_{1}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x
$$

SOLUTION:

$0 \leq \sin ^{2}(x) \leq 1 \quad$ for all x so
$0 \leq \frac{\sin ^{2}(x)}{x^{2}} \leq \frac{1}{x^{2}}$ for all $x \geq 1$
Since $\int_{1}^{\infty} \frac{1}{x^{2}} d x \quad$ converges by the p-test, so does $\int_{1}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x$
4. Evaluate the following integrals. Show all work!
(a) (12 points) $\int \frac{\ln (x) \ln (\ln (x))}{x} d x$

SOLUTION:

$\mathrm{u}=\ln (x)$
$\mathrm{du}=\frac{1}{x} d x$
$\Longrightarrow \int^{x} u \cdot \ln (u) d u \Longrightarrow \mathrm{u}=\ln (\mathrm{u}), \mathrm{du}=\frac{1}{u} d u, \mathrm{dv}=u, \mathrm{v}=\frac{u^{2}}{2}$
$\Longrightarrow \frac{\ln (u) u^{2}}{2}-\int \frac{u}{2} d u=\frac{u^{2} \cdot \ln (u)}{2}-\frac{u^{2}}{4}+c$
$=\frac{(\ln (x))^{2} \cdot \ln (\ln (x))}{2}-\frac{(\ln (x))^{2}}{4}+c$
(b) (12 points) $\int x^{3} \sqrt{4+x^{2}} d x$

SOLUTION:

$\mathrm{x}=2 \tan (\theta), d x=2 \sec ^{2} \theta d \theta$
$\Longrightarrow \int 8 \tan ^{3} \theta \sqrt{4+4 \tan ^{2} \theta} 2 \sec ^{2} \theta d \theta$
$\Longrightarrow 32 \int \tan ^{3} \theta \sec ^{3} \theta d \theta$
$=32 \int\left(\sec ^{2} \theta-1\right) \sec ^{2} \theta \sec (\theta) \tan (\theta) d \theta$
$\Longrightarrow u=\sec \theta, d u=\sec \theta \tan \theta d \theta$
$=32 \int\left(u^{4}-u^{2}\right) d u$
$=32\left[\frac{u^{5}}{5}-\frac{u^{3}}{3}\right]+c$
$=32\left[\frac{\sec ^{5}(\theta)}{5}-\frac{\sec ^{3}(\theta)}{3}\right]+c$

(c) (12 points) $\int \frac{3 x^{2}}{x^{2}+1} d x$

SOLUTION:

$$
\begin{aligned}
& \int \frac{3 x^{2}}{x^{2}+1} d x=3 \int \frac{x^{2}}{x^{2}+1} d x \\
\Longrightarrow & \text { After long division }=3\left(\int d x-\int \frac{1}{x^{2}+1} d x\right)=3 x-3 \tan ^{-1}(x)+c
\end{aligned}
$$

