1. [APPM 1360 Exam (36 pts)] Evaluate the following integrals.

(a) \[\int \sqrt{x} \ln x \, dx \]
(b) \[\int_0^\infty \frac{x^2}{(4-x^2)^{3/2}} \, dx \]
(c) \[\int_2^\infty \frac{dv}{v^2+6v-7} \]

SOLUTION:

(a) Use integration by parts with \(dv = \sqrt{x} \, dx \), \(v = \frac{2}{3}x^{3/2} \) and \(u = \ln x \), \(du = \frac{1}{x} \, dx \). Then

\[
\int \sqrt{x} \ln x \, dx = \frac{2}{3}x^{3/2} \ln x - \int \frac{2}{3} \frac{x^{3/2}}{x} \, dx = \frac{2}{3}x^{3/2} \ln x - \frac{4}{9}x^{3/2} + C = \frac{2}{3}x^{3/2} \left(\ln x - \frac{2}{3} \right) + C
\]

(b) Use the trig substitution \(x = 2 \sin \theta \). Then \(du = 2 \cos \theta \, d\theta \). For the bounds, \(x = 0 \implies \theta = 0 \) and \(x = \sqrt{2} \implies \theta = \pi/4 \). Then

\[
\int_0^{\pi/4} \tan^2 \theta \, d\theta = \int_0^{\pi/4} (\sec^2 \theta - 1) \, d\theta = (\tan \theta - \theta) \bigg|_0^{\pi/4} = 1 - \pi/4
\]

(c) This is an improper integral and to integrate we’ll need to use partial fractions.

\[
\frac{1}{v^2+6v-7} = \frac{1}{(v+7)(v-1)} = \frac{A}{v+7} + \frac{B}{v-1} \implies 1 = A(v-1) + B(v+7)
\]

\[
v = 1: 1 = B(8) \implies B = \frac{1}{8}
\]

\[
v = -7: 1 = A(-8) \implies A = -\frac{1}{8}
\]

\[
\int_2^{\infty} \frac{dv}{v^2+6v-7} = \frac{1}{8} \lim_{t \to \infty} \int_2^t \left(\frac{1}{v-1} - \frac{1}{v+7} \right) \, dv = \frac{1}{8} \lim_{t \to \infty} \left(\ln |v-1| - \ln |v+7| \right) \bigg|_2^t
\]

\[
= \frac{1}{8} \lim_{t \to \infty} \ln \left| \frac{v-1}{v+7} \right| \bigg|_2^t = \frac{1}{8} \lim_{t \to \infty} \left(\ln \left| \frac{t-1}{t+7} \right| - \ln \left| \frac{2}{2+7} \right| \right)
\]

\[
= \frac{1}{8} \lim_{t \to \infty} \left(\ln \left| 1 - \frac{1}{t+7/t} \right| - \ln \frac{1}{9} \right) = \frac{1}{8} \ln \left(1 + \ln 9 \right) = \frac{\ln 9}{8}
\]

2. [APPM 1360 Exam (20 pts)] The following problems are not related.

(a) (12 pts) Determine whether \(\int_0^2 \frac{1}{x^4 + \sqrt{x}} \, dx \) converges or diverges. Justify your answer completely.

(b) (8 pts) Write down the form of the partial fraction decomposition of the following function. Do not solve for the coefficients.

\[R(x) = \frac{x^4 + 1}{x^3(x+1)(x^2+3)^2} \]

SOLUTION:

(a) Since we cannot integrate this directly, we use the Comparison Theorem. We have

\[0 \leq \sqrt{x} \leq x^4 + \sqrt{x} \implies 0 \leq \frac{1}{x^4 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \]

Now \(\int_0^2 \frac{1}{\sqrt{x}} \, dx \) converges since this is a \(p \)-integral with \(p = 1/2 < 1 \). Thus, \(\int_0^2 \frac{1}{x^4 + \sqrt{x}} \, dx \) converges by the Comparison Theorem.
3. Your calculator is broken and you have a need to compute \(\ln 4 \). With your newfound knowledge of approximate integration, you decide to do this using the definition of the natural logarithm, that is, you will use the fact that \(\ln 4 = \int_{1}^{4} \frac{1}{x} \, dx \).

(a) Use the Trapezoidal Rule to estimate the value of the integral with 3 subintervals.

(b) Suppose you have to know \(\ln 4 \) with an error no greater than \(10^{-6} \). Using the above integral, how many subintervals would be necessary, using the Midpoint Rule, to estimate \(\ln 4 \) with this accuracy?

SOLUTION:

(a) We have \(\Delta x = \frac{b - a}{n} = \frac{4 - 1}{3} = 1 \). This then gives

\[
T_3 = \frac{1}{2} \left[\frac{1}{1} + 2 \left(\frac{1}{2} \right) + 2 \left(\frac{1}{3} \right) + \frac{1}{4} \right] = \frac{35}{24}
\]

(b) We need to find an upper bound on the absolute value of the second derivative of \(f(x) = \frac{1}{x} \) on the interval \(1 \leq x \leq 4 \). We have

\[
f(x) = x^{-1} \implies f'(x) = -1x^{-2} \implies f''(x) = 2x^{-3} \implies |f''(x)| = 2x^{-3} = 2/x^3
\]

which is a strictly decreasing function on \([1, 4]\). Therefore, it takes on its maximum value at the left endpoint \(x = 1 \) so that \(K = 2 \), that is, \(|f''(x)| \leq 2 \). Then we need

\[
|E_M| \leq \frac{K(b - a)^3}{24n^2} < 10^{-6}
\]

\[
\frac{2(4 - 1)^3}{24n^2} < 10^{-6}
\]

\[
\frac{9(10^6)}{4} < n^2
\]

\[
1500 < n
\]

4. Consider the region bounded by the curves \(y = x^2 \) and \(y = 2 - x \).

(a) Graph the region, labeling intersection points.

(b) Set up, but do not evaluate, the integral(s) to find the area of the region if integrating with respect to \(y \).

(c) Set up, but do not evaluate, the integral(s) to find the area of the region if integrating with respect to \(x \).

(d) Find the actual area by evaluating one of the integrals from part (a) or (b). Be sure to clearly indicate which part you are using.

SOLUTION:

(a) Sketch of area.

(b) \[
\int_{0}^{1} [\sqrt{y} - (-\sqrt{y})] \, dy + \int_{1}^{4} [(2 - y) - (-\sqrt{y})] \, dy
\]
(c)

$$\int_{-2}^{1} [(2 - x) - x^2] \, dx$$

(d) Integration with respect to x:

$$\int_{-2}^{1} [(2 - x) - x^2] \, dx = \left[2x - \frac{1}{2} x^2 - \frac{1}{3} x^3 \right]_{-2}^{1} = \left(2 - \frac{1}{2} - \frac{1}{3} \right) - \left(-4 - 2 + \frac{8}{3} \right) = \frac{9}{2}$$

Integration with respect to y:

$$\int_{0}^{1} [\sqrt{y} - (-\sqrt{y})] \, dy + \int_{1}^{4} [(2 - y) - (-\sqrt{y})] \, dy = \int_{0}^{1} 2y^{1/2} \, dy + \int_{1}^{4} (2 - y + y^{1/2}) \, dy$$

$$\left. \frac{4}{3} y^{3/2} \right|_{0}^{1} + \left. \left(2y - \frac{1}{2} y^2 + \frac{2}{3} y^{3/2} \right) \right|_{1}^{4} = \frac{4}{3} + \left[8 - 8 + \frac{16}{3} - \left(2 - \frac{1}{2} + \frac{2}{3} \right) \right] = \frac{9}{2}$$