
APPM 1360 Exam 3 Spring 2024

1. (16 points) Determine whether each of the following series is absolutely convergent, conditionally conver-
gent, or divergent. For this problem, and all subsequent problems, explain your work and name any test or
theorem that you use.

(a)
∞∑
n=2

(
−1

2

)n
n3

(b)
∞∑
n=1

n+ 2√
n3 + 5

Solution:

(a) Apply the Ratio Test with an =

(
−1

2

)n
n3.

lim
n→∞

∣∣∣∣an+1

an
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∣∣∣∣∣
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∣∣∣∣∣12
(
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1

n

)3
∣∣∣∣∣ = 1

2
< 1

Thus the series is absolutely convergent .

(b) Apply the Limit Comparison Test and compare to the divergent p-series
∞∑
n=1

1√
n

(
p = 1

2

)
.

lim
n→∞

an
bn

= lim
n→∞

n+2√
n3+5
1√
n
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n→∞

n+ 2√
n3 + 5

·
√
n

1
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n→∞

n3/2 + 2
√
n√

n3 + 5
·

1
n3/2

1
n3/2

= lim
n→∞

1 + 2
n√

1 + 5
n3

= 1 > 0

Therefore the given series also is divergent .

2. (12 points) Use the Maclaurin series for ln(1+x) and ln(1−x) to find the Maclaurin series for ln
(
1 + x

1− x

)
.

Write your answer using sigma notation and include the radius of convergence.
(Hint: Write out the first few terms of the ln(1 + x) and ln(1− x) series.)

Solution:

ln(1 + x) =

∞∑
n=1

(−1)n−1x
n

n
= x− x2

2
+
x3

3
− x4

4
+ · · ·

ln(1− x) =
∞∑
n=1

(−1)n−1 (−x)
n

n
=

∞∑
n=1

−x
n

n
= −x− x2

2
− x3

3
− x4

4
− · · ·

Note: (−1)n−1(−1)n = (−1)2n−1 = −1. Then

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x)
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2
+
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3
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�
�
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4
+ · · ·

)
−
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�
�
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2
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3
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4
− · · ·
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=

(
x+
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3
+
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5
+ · · ·

)
+

(
x+
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3
+
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5
+ · · ·

)

= 2

(
x+

x3

3
+
x5

5
+ · · ·

)
=

∞∑
n=0

2x2n+1

2n+ 1
.

Because both ln(1 + x) and ln(1 − x) series have a radius of R = 1, their difference also has a radius of
R = 1 .

3. (18 points)

(a) Find a series representation for
∫ 1

0
e−x

3
dx.

(b) Use the Alternating Series Estimation Theorem to approximate the value of the definite integral from
part (a) with an error less than 1/20. Fully simplify your answer. (You may assume that the hypotheses
of the Alternating Series Estimation Theorem are satisfied.)

Solution:

(a) According to the list of frequently-used Maclaurin series on the cover page of the exam, the Maclaurin
series for ex is

ex =
∞∑
n=0

xn

n!
, R =∞

Therefore,

e−x
3
=
∞∑
n=0

(
−x3

)n
n!

, R =∞

=

∞∑
n=0

(−1)n x
3n

n!
, R =∞

Term-by-term integration leads to∫ 1

0
e−x

3
dx =

∫ 1

0

∞∑
n=0

(−1)n x
3n

n!
dx

=
∞∑
n=0

(−1)n 1

n!

∫ 1

0
x3n dx

=

∞∑
n=0

(−1)n 1

n!

[
x3n+1

3n+ 1

∣∣∣∣1
0

]

=
∞∑
n=0

(−1)n 1

n!(3n+ 1)
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(b) The result from part (a) indicates that∫ 1

0
e−x

3
dx =

∞∑
n=0

(−1)n 1

n!(3n+ 1)

=
1

0!(1)
− 1

1!(4)
+

1

2!(7)
− 1

3!(10)
+ · · ·

= 1− 1

4
+

1

14
− 1

60
+ · · ·

This is an alternating series with bn =
1

n!(3n+ 1)
.

The problem statement ensures that the hypotheses of the Alternating Series Estimation Theorem are
satisfied, so that the following result holds:

|error| = |s− sn| ≤ bn+1

where s is the infinite sum and sn is the nth partial sum. Since b3 = 1/60 < 1/20, then using s2 to
estimate the value of s produces an acceptable error. Therefore,∫ 1

0
e−x

3
dx ≈ s2 = 1− 1

4
+

1

14
=

28− 7 + 2

28
=

23

28
.

4. (28 points) Define a function f(x) =
∞∑
n=1

1

n2
xn.

(a) Determine the values of x for which the series is absolutely convergent.

(b) Find a Taylor series for f ′(x).

(c) Find a closed form (non-series) expression for xf ′(−x).

Solution:

(a) Apply the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
1

(n+1)2
xn+1

1
n2xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(

n

n+ 1

)2

x

∣∣∣∣∣ = |x|
(

lim
n→∞

n

n+ 1

)
LH
= |x|

The series has a radius R = 1 and is absolutely convergent for |x| < 1. Next consider the endpoints of
the interval (−1, 1).

At x = 1, the series
∞∑
n=1

1

n2
is the absolutely convergent p-series (p = 2).

At x = −1, the series
∞∑
n=1

(−1)n

n2
also is absolutely convergent based on the previous result.

Therefore the given series is absolutely convergent for x in [−1, 1] .

(b)

f(x) =
∞∑
n=1

1

n2
xn

f ′(x) =
d

dx

( ∞∑
n=1

1

n2
xn

)
=
∞∑
n=1

1

n2
· d
dx

(xn) =
∞∑
n=1

1

n2
(
nxn−1

)
=

∞∑
n=1

1

n
xn−1
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(c)

xf ′(−x) = x
∞∑
n=1

1

n
(−x)n−1 =

∞∑
n=1

(−1)n−1

n
xn = ln(1 + x)

5. (26 points) The following problems are not related.

(a) Find T2(x), the second order Taylor polynomial, centered at π/4, for f(x) = sin(x).

(b) Write the series in sigma notation and find its sum.

1

1! 3
+

1

2! 9
+

1

3! 27
+

1

4! 81
+ · · ·

Solution:

(a)

f(x) = sinx f
(
π
4

)
= 1√

2

f ′(x) = cosx f ′
(
π
4

)
= 1√

2

f ′′(x) = − sinx f ′′
(
π
4

)
= − 1√

2

T2(x) = f(a) +
f ′(a)

1!
(x− a) + f ′′(a)

2!
(x− a)2

= f(π/4) +
f ′(π/4)

1!

(
x− π

4

)
+
f ′′(π/4)

2!

(
x− π

4

)2
=

1√
2
+

1√
2

(
x− π

4

)
− 1

2
√
2

(
x− π

4

)2
(b)

1

1! 3
+

1

2! 9
+

1

3! 27
+

1

4! 81
+ · · · = 1

1! 31
+

1

2! 32
+

1

3! 33
+

1

4! 34
+ · · · =

∞∑
n=1

(1/3)n

n!

The series sums to e1/3 − 1 because
∞∑
n=0

xn

n!
= ex which implies

∞∑
n=1

xn

n!
= ex − 1.

(c) Consider the parametric equations given by x = 1 + cos t and y = t + π for −π ≤ t ≤ π. Eliminate
the parameter and sketch the curve. Indicate with an arrow the direction in which the curve is traced as
t increases.

Solution:

Eliminating the parameter gives y = t+ π =⇒ t = y − π, so x = 1 + cos(y − π) .

Note that eliminating the parameter from the x equation, then substituting into the y equation, leads to the
function y = cos−1(x−1)+π, which will produce only the top half of the parametric curve. This is because
the cos−1(x) function has a range of [0, π], yielding a y-range of [π, 2π], not [0, 2π].
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