1. (34 pts) Evaluate the following integrals and simplify your answers.
(a) $\int\left(\tan ^{2} \theta+1\right) \sec ^{2} \theta d \theta$
(b) $\int \frac{2 x^{2}-5 x+6}{x^{3}+3 x} d x$
(c) $\int \frac{d x}{x^{2} \sqrt{25-x^{2}}}$

Solution:

(a)

$$
\begin{aligned}
\int\left(\tan ^{2} \theta+1\right) \sec ^{2} \theta d \theta & =\int \underbrace{}_{\begin{array}{c}
u=\tan \theta \\
\tan ^{2} \theta \sec ^{2} \theta \\
\sec ^{2} \theta d \theta
\end{array}} d \theta+\int \sec ^{2} \theta d \theta \\
& =\int u^{2} d u+\int \sec ^{2} \theta d \theta \\
& =(1 / 3) \tan ^{3} \theta+\tan \theta+C
\end{aligned}
$$

(b) Using partial fractions, we have

$$
\frac{2 x^{2}-5 x+6}{x^{3}+3 x}=\frac{2 x^{2}-5 x+6}{x\left(x^{2}+3\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+3}
$$

Solving yields $A=2, B=0$ and $C=-5$. The original integral becomes:

$$
\begin{aligned}
\int \frac{2 x^{2}-5 x+6}{x^{3}+3 x} d x & =\int \frac{2}{x} d x-\int \frac{5}{x^{2}+3} d x \\
& =2 \ln |x|-\frac{5}{\sqrt{3}} \tan ^{-1}(x / \sqrt{3})+C
\end{aligned}
$$

(c) For this integral, use trig substitution with $x=5 \sin \theta$ and $d x=5 \cos \theta d \theta$ and obtain

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{25-x^{2}}} & =\int \frac{5 \cos \theta}{25 \sin ^{2} \theta \sqrt{25-25 \sin ^{2} \theta}} d \theta \\
& =\int \frac{1}{25 \sin ^{2} \theta} d \theta \\
& =\frac{1}{25} \int \csc ^{2} \theta d \theta \\
& =\frac{-1}{25} \cot \theta+C \\
& =-\frac{\sqrt{25-x^{2}}}{25 x}+C
\end{aligned}
$$

where the final equality comes from the reference triangle for $x=5 \sin \theta$.
2. (26 points) Consider the integral $I=\int_{-1}^{1}(2-x) e^{x} d x$.
(a) Estimate the value of I using the trapezoidal approximation T_{2}. Express your answer in terms of the number e and simplify.
(b) Estimate the error for the approximation T_{2}. Express your answer in terms of the number e and simplify.
(c) Find the exact value of the integral.

Solution: Let $f(x)=(2-x) e^{x}$.
(a)

$$
\begin{aligned}
T_{2} & =\frac{\Delta x}{2}[f(-1)+2 f(0)+f(1)] \\
& =\frac{1}{2} \cdot \frac{1-(-1)}{2}\left[(2-(-1)) e^{-1}+2(2-0) e^{0}+(2-1) e^{1}\right] \\
& =\frac{3 e^{-1}+4+e}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left|E_{T}\right| & \leq \frac{K[1-(-1)]^{3}}{12 n^{2}}=\frac{8 K}{12 \cdot 2^{2}}=\frac{K}{6} \\
f^{\prime}(x) & =(2-x) e^{x}-e^{x}=(1-x) e^{x} \\
f^{\prime \prime}(x) & =(1-x) e^{x}-e^{x}=-x e^{x} \\
\left|f^{\prime \prime}(x)\right| & =\left|-x e^{x}\right|=|-x|\left|e^{x}\right|=|x| e^{x}
\end{aligned}
$$

On the interval $[-1,1],|x|$ attains its maximum value at $x= \pm 1$ and e^{x} attains its maximum value at $x=1$. Therefore, $\left|f^{\prime \prime}(x)\right|=|x| e^{x}$ attains its maximum value on $[-1,1]$ at $x=1$.

$$
\left|f^{\prime \prime}(x)\right| \leq\left|f^{\prime \prime}(1)\right|=|-e|=e .
$$

Therefore, let $K=e$, so that $\left|E_{T}\right| \leq \frac{e}{6}$.
(c)

$$
I=\int_{-1}^{1}(2-x) e^{x} d x
$$

Apply Integration by Parts, as follows:

$$
\begin{aligned}
& u=2-x \quad d v=e^{x} d x \\
& d u=-d x \quad v=e^{x} \\
& I=\left.(2-x) e^{x}\right|_{-1} ^{1}+\int_{-1}^{1} e^{x} d x \\
& =\left.(2-x) e^{x}\right|_{-1} ^{1}+\left.e^{x}\right|_{-1} ^{1} \\
& =e-3 e^{-1}+e-e^{-1} \\
& =2 e-4 e^{-1}
\end{aligned}
$$

3. (22 points) Determine whether the following integrals are convergent or divergent. Explain your reasoning fully for each integral. If the integral converges, find its value.
(a) $\int_{2}^{\infty} \frac{x^{2}}{\sqrt{x^{6}-4}} d x$
(b) $\int_{-1}^{0} \frac{e^{1 / x}}{x^{2}} d x$

Solution:

(a) For $x \geq 2$ we have

$$
0 \leq x^{6}-4 \leq x^{6}
$$

so

$$
0 \leq\left(x^{6}-4\right)^{1 / 2} \leq x^{3}
$$

Thus,

$$
0 \leq \frac{1}{x}=\frac{x^{2}}{x^{3}} \leq \frac{x^{2}}{\left(x^{6}-4\right)^{1 / 2}}
$$

Since we know

$$
\int_{2}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln (x)\right|_{2} ^{t}=\lim _{t \rightarrow \infty}(\ln t-\ln 2) \text { diverges }
$$

then the original integral diverges by the Comparison Test for Integrals.

Alternate Solution: Let $x^{3}=2 \sec \theta$. Then $3 x^{2} d x=2 \sec \theta \tan \theta d \theta$.

$$
\begin{aligned}
\int_{2}^{\infty} \frac{x^{2}}{\sqrt{x^{6}-4}} d x & =\lim _{a \rightarrow \pi / 2^{-}} \int_{\operatorname{arcsec} 4}^{a} \frac{\frac{2}{3} \sec \theta \tan \theta}{2 \tan \theta} d \theta \\
& =\lim _{a \rightarrow \pi / 2^{-}} \int_{\operatorname{arcsec} 4}^{a} \frac{1}{3} \sec \theta d \theta \\
& =\lim _{a \rightarrow \pi / 2^{-}} \frac{1}{3}[\ln |\sec \theta+\tan \theta|]_{\operatorname{arcsec} 4}^{a} \\
& =\lim _{a \rightarrow \pi / 2^{-}} \frac{1}{3}[\ln |\sec a+\tan a|-\ln |4+\sqrt{15}|]=\infty
\end{aligned}
$$

The given integral is divergent.
(b)

$$
\int_{-1}^{0} \frac{e^{1 / x}}{x^{2}} d x=\lim _{a \rightarrow 0^{-}} \int_{-1}^{a} \underbrace{\frac{e^{1 / x}}{d^{2}}=-\left(1 / x^{2}\right) d x}_{\substack{u=1 / x \\ x^{2}}} d x
$$

$$
\begin{aligned}
& =\lim _{a \rightarrow 0^{-}} \int_{-1}^{1 / a}-e^{u} d u \\
& =\lim _{a \rightarrow 0^{-}}-\left.e^{u}\right|_{-1} ^{1 / a} \\
& =\lim _{a \rightarrow 0^{-}}\left(-e^{1 / a}+e^{-1}\right)=e^{-1}
\end{aligned}
$$

Thus, the improper integral converges by direct evaluation.
4. (18 points) Consider the region \mathcal{R} in Quadrant 1 bounded by the curves $y=(x-3)^{2}$ and $y=-3 x+9$.
(a) Use the grid provided below to sketch the region \mathcal{R}. Shade in the region \mathcal{R}.
(b) Using only disks or washers, set up, but do not evaluate, an integral to find the volume of the solid generated by rotating \mathcal{R} about:
i. the x-axis,
ii. the line $x=3$.

Solution:

(a)

(b) i. Volume for rotating around the x-axis is given by

$$
V=\pi \int_{0}^{3}\left[(-3 x+9)^{2}-(x-3)^{4}\right] d x
$$

ii. To find the volume for rotating around the line $x=3$ using washers, we need to use $y=(x-3)^{2}$ to find x as a function of y. We obtain $x=-y^{1 / 2}+3$. Likewise, $y=-3 x+9$ becomes $x=(9-y) / 3$. Then, the requested volume is

$$
\begin{aligned}
V & =\pi \int_{0}^{9}\left[\left(3-\left(3-y^{1 / 2}\right)\right)^{2}-\left(3-\frac{9-y}{3}\right)^{2}\right] d y \\
& =\pi \int_{0}^{9}\left[y-\left(3-\frac{9-y}{3}\right)^{2}\right] d y
\end{aligned}
$$

