
APPM 1360 Exam 2 Spring 2023

1. (10 points) Solve the following initial value problem:

dy

dx
= x2 csc(y), y(2) = 0.

Write your answer in the form y = f(x).

Solution:

First, we separate the equation and integrate both sides:

dy

dx
= x2 csc(y)∫

sin(y) dy =

∫
x2 dx

− cos(y) =
1

3
x3 + C.

Then, we plug in our initial condition to solve for C:

− cos(0) =
8

3
+ C

−11

3
= C.

We replace C with this value and solve for y:

− cos(y) =
x3 − 11

3

y = arccos

(
11− x3

3

)
.

2. (12 pts) Consider the lamina depicted below, which is bounded above by a line through the origin and below by the
curve y = x3 on the interval 0 ≤ x ≤ a. The line and the curve intersect at x = 0 and at x = a. The lamina has a
uniform density of ρ. What value of a is needed so that x̄ = 1?
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Solution:

The line and the curve intersect at the origin and the point (a, a3). The slope of the line is a3/a = a2 and the
equation of the line is y = a2x.

My = ρ

∫ a

0
x(a2x− x3)dx = ρ

∫ a

0
(a2x2 − x4)dx = ρ

[
a2x3

3
− x5

5

] ∣∣∣∣a
0

= ρ

(
a5

3
− a5

5

)
=

2a5ρ

15

m = ρ

∫ a

0
(a2x− x3)dx = ρ

[
a2x2

2
− x4

4

] ∣∣∣∣a
0

= ρ

(
a4

2
− a4

4

)
=

a4ρ

4

x̄ =
My

m
=

2a5ρ/15

a4ρ/4
=

8a

15

In order for x̄ = 1, we must have
8a

15
= 1, which implies that a =

15

8

3. (28 pts) Consider the region R, in quadrant I, bounded by the x-axis, the y-axis, y = 2, and y = ln(2x).

(a) Use the grid below to sketch and shade the region R. Label the coordinates of the intersections of two curves.
(You may find it helpful to know that e2 ≈ 7.4.)

(b) Set up but do not evaluate expressions involving integrals to determine each of the following:

I. The volume of revolution found by revolving the given region about the y-axis using cylindrical shells.
II. The area of the surface generated by rotating the curve f(x) = ln(2x) with 0 ≤ y ≤ 2 about the y-axis.

III. The perimeter of R. (That is, find the arc length of the entire perimeter of R.)

Solution:

(a) We obtain the following region:

2



(e2/2, 2)

x

y

1 2 3 4

1

2

3

4

R

(b) We note that the point of intersection of the two curves is the solutions of 2 ln(2x), which is x = e2/2. We
can see this illustrated in the graph above as well.

I. We proceed with cylindrical shells. There is a height of 2 for 0 ≤ x ≤ 1
2 and 2− ln(2x) for 1

2 ≤ x ≤ e2

2 .
The radius is given by x. So, the desired sum of integrals is

V = 2π

∫ 1
2

0
2x dx+ 2π

∫ e2

2

1
2

x(2− ln(2x)) dx.

II. We obtain

2π

∫ e2/2

1/2
x

√
1 +

(
1

x

)2

dx

or

2π

∫ 2

0

1

2
ey

√
1 +

(
1

2
ey
)2

dy.

III. The perimeter consists of three line segments of lengths e2/2, 2, and 1/2 (starting from the top and
moving counterclockwise), and the curve y = ln(2x) along 1/2 ≤ x ≤ e2/2. So, the perimeter is given
by

5 + e2

2
+

∫ e2/2

1/2

√
1 +

(
1

x

)2

dx.

Alternatively, we consider the curve as x = 1
2e

y for 0 ≤ y ≤ 2 and obtain

5 + e2

2
+

∫ 2

0

√
1 +

(
1

2
ey
)2

dy.

4. (27 pts) Determine if each of the following converges or diverges. Be sure to fully justify your answers using the
techniques learned in this course. If you use a Test or Theorem, be sure to state its name and show its hypotheses
are satisfied.

(a)
{
5(2n+ 1)!− n!

(2n+ 1)!

}∞

n=1

(b)
∞∑
n=1

(n+ 2)e−n
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(c)
∞∑
n=2

ln

(
n2 + n

4− 9n+ 5n2

)
Solution:

(a) Note that

5(2n+ 1)!− n!

(2n+ 1)!
= 5− n!

(2n+ 1)!

= 5− 1

(2n+ 1)(2n)(2n− 1) · · · (n+ 2)(n+ 1)

→ 5− 0

= 5

as n → ∞. So, the given sequence converges to 5.

(b) We will apply the Integral Test. Consider f(x) = (x+ 2)e−x. We immediately see that f is continuous and
positive on [1,∞) and that f(n) equals the terms of the series. Since

f ′(x) = −(x+ 1)e−x < 0

for x > 1, then we also see that f is decreasing on [1,∞). So, we know that the integral test applies.
We next need to see if the corresponding integral is convergent. Note that the antidifferentiation requires
integration by parts where u = x and dv = e−x dx, and that the penultimate limit requires L’Hospital’s rule
because the limit is a 0

0 -indeterminate form.

∫ ∞

1
(x+ 2)e−x dx = lim

t→∞

∫ t

1
(x+ 2)e−x dx

= lim
t→∞

[
−(x+ 3)e−x

]t
1

=
4

e
− lim

t→∞

t+ 3

et

=
4

e
− lim

t→∞

1

et

=
4

e
.

Since the integral converges, then the Integral Test tells us that
∑∞

n=1(n+ 2)e−n also converges.

(c) We apply the Divergence Test.

lim
n→∞

ln

(
n2 + n

4− 9n+ 5n2

)
= ln

(
lim
n→∞

n2 + n

4− 9n+ 5n2

)
= ln

1

5
̸= 0.

Since the limit is nonzero, then the series diverges.
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5. (10 points) Find all possible values for r so that
∞∑
n=2

5rn =
4

3
.

Solution:

4

3
=

∞∑
n=2

5rn

=
∞∑
n=2

(5r)rn−1

= −5r +
∞∑
n=1

(5r)rn−1

= −5r +
5r

1− r

=
5r2

1− r
.

This equation is equivalent to the quadratic equation 0 = 15r2 + 4r − 4. Using the quadratic formula, we find the
solutions are

r =
−4±

√
42 − 4(15)(−4)

2(15)
= −2

3
,
2

5
.

6. (13 points) Indicate whether the following are Always True or Sometimes False by circling your answer below
the statement. If the answer is Sometimes False, provide an example below to show why it’s Sometimes False. No
further justification is necessary.

(i) If {an} diverges so does {|an|}
(ii) If {an} and {bn} are divergent, then {an + bn} diverges.

(iii) If {an} converges, it is bounded.

(iv) If {an} converges, it is monotonic.

(v) If
∞∑
n=1

(
an

(
2

3

)n)
converges, then lim

n→∞
an = 0.

Solution:

(i) Sometimes False. One counterexample to the statement is an = (−1)n.

(ii) Sometimes False. One counterexample to the statement is when an = (−1)n and bn = (−1)n+1, both of
which diverge. But, an + bn = 0 is a convergent sequence.

(iii) Always True.

(iv) Sometimes False. As a counterexample to the statement, consider an = (−1)n

n . It is not monotonic since it is
alternating, but it does converge to 0.

(v) Sometimes False. As a counterexample to the statement, consider an = 2. This is a constant sequence that
converges to 2 ̸= 0, but

∞∑
n=1

(
an

(
2

3

)n)
=

∞∑
n=1

2

(
2

3

)n

is a convergent geometric series.
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