APPM 1360 Exam 3 Spring 2022

1. (20 pts) Are the following series absolutely convergent, conditionally convergent, or divergent? Justify your
answers and name any tests that you use.
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(a) First check for absolute convergence. Apply the Limit Comparison Test to E ﬁ and compare
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Therefore Z \ﬁi is divergent and the given series is not absolutely convergent.
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Now check for conditional convergence by applying the Alternating Series Test to
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Therefore Z ﬁ is convergent by the Alternating Series Test and is | conditionally convergent |.

(b) We apply the Ratio Test where a,, = (
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Thus, the series is ‘ absolutely convergent ‘

2. (20 pts) Consider the integral / arctan(bz) dz.

(a) Find a Maclaurin series representation for the integral. Write your answer in sigma notation and sim-
plify.

(b) What is the radius of convergence of the series found in part (a)? Explain your answer.
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(c) Find a series representation for / arctan(bx) dz. Write your answer in sigma notation and simplify.
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(a) Recall the MacLaurin Series for arctan(z) is E 2( —i-) . 2?1 with R = 1. So, we have
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(b) Because the arctan(x) series converges for || < 1, it follows that the arctan(5z) series converges for
br| <1 = |z| < % and its radius of convergence is R = % Integrating a power series does not

change the radius of convergence, so the series found in part (a) also has a radius of R = .
(c)

=

/$ t (5 )d i (_1)71 52n+1 2n+2
arctan(ox Xr = X
0 = (2n+1)(2n+2) .

B i (_1)n 52n+1
|2 2n+1)(2n +2) 202




3. (24 pts) Let f(x) = /.
(a*) Find the Taylor polynomial T5(x) for f(x), centered at a = 1.
(b*) Use T(x) to approximate the value of 4/ %. Simplify your answer.

(c*) Use Taylor’s Formula to find an error bound for the approximation found in part (b). Simplify your

ansSwer.
Solution:
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Substituting f(1) = 1, f’(1) = 3, and f”(1) = —1 gives
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4. (20 pts) Let g(z) = x3e?®.

(a) Find the Maclaurin series for g(x). Write your answer in sigma notation and simplify.

(b*) What is the value of ¢g(1?) (0)? You do not need to simplify your answer.
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(a) Recall the Maclaurin Series for e” is r with R = co. Then
|
n!

n=0
oo o 3
_ .32 _ .3 (2z)" _ 2"t
g(z) =xe ==z Zin[ —Z |
n=0 n=0

(b) Note that for n = 10, matching the z'3 term in the Maclaurin Series formula to the given series gives
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Solving, we have g\'®)(0) =
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(c) This sum is our series with x = 2. Thus, Z — = g(2) = 23et = .
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5. (16 pts) Consider the parametric curve defined by z = e!/2, y = €.

(a) Sketch the curve. Find and label all intercepts. Indicate with an arrow the direction of motion as ¢
increases.
(b*) Eliminate the parameter to find a Cartesian equation y = f(x) of the curve.

Solution:
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The graph has no intercepts because x > 0, y > 0 for all values of ¢.

(b) r=e/? — t=2Inz
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Y= et — eZlnx — elnx — 562

The Cartesian equation is |y = 22,z > 0|,




