1. (20 pts) Are the following series absolutely convergent, conditionally convergent, or divergent? Justify your answers and name any tests that you use.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{5n+2}}$$
 (b) $\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!}$

Solution:

(a) First check for absolute convergence. Apply the Limit Comparison Test to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{5n}+2}$ and compare

to the divergent p-series $\sum_{n=1}^\infty \frac{1}{\sqrt{n}} \ (p=\frac{1}{2}<1).$

$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt{5n+2}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{5n+2}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{1}{\sqrt{5} + \frac{2}{\sqrt{n}}} = \frac{1}{\sqrt{5}} > 0$$

Therefore $\sum_{n=1}^{\infty} \frac{1}{\sqrt{5n+2}}$ is divergent and the given series is not absolutely convergent.

Now check for conditional convergence by applying the Alternating Series Test to $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{5n+2}}$.

Let
$$b_n = \frac{1}{\sqrt{5n+2}}$$
. Then
• $b_{n+1} = \frac{1}{\sqrt{5(n+1)+2}} < \frac{1}{\sqrt{5n+2}}$, thus b_n is decreasing and
• $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{\sqrt{5n+2}} = 0.$

Therefore $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{5n+2}}$ is convergent by the Alternating Series Test and is conditionally convergent

(b) We apply the Ratio Test where $a_n = \frac{(n!)^3}{(3n)!}$.

$$\begin{split} L &= \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \\ &= \lim_{n \to \infty} \frac{((n+1)!)^3}{(3(n+1))!} \cdot \frac{(3n)!}{(n!)^3} \\ &= \lim_{n \to \infty} \frac{((n+1)!)^3}{(n!)^3} \cdot \frac{(3n)!}{(3n+3)!} \\ &= \lim_{n \to \infty} \frac{(n+1)^3 \cdot (n!)^3}{(n!)^3} \cdot \frac{(3n)!}{(3n+3)(3n+2)(3n+1)(3n)!} \\ &= \lim_{n \to \infty} \frac{(n+1)^3}{(3n+3)(3n+2)(3n+1)} \end{split}$$

$$= \lim_{n \to \infty} \frac{n+1}{3n+3} \cdot \frac{n+1}{3n+2} \cdot \frac{n+1}{3n+1}$$
$$= \lim_{n \to \infty} \frac{1+\frac{1}{n}}{3+\frac{3}{n}} \cdot \frac{1+\frac{1}{n}}{3+\frac{2}{n}} \cdot \frac{1+\frac{1}{n}}{3+\frac{1}{n}}$$
$$= \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{27} < 1.$$

Thus, the series is absolutely convergent

- 2. (20 pts) Consider the integral $\int \arctan(5x) dx$.
 - (a) Find a Maclaurin series representation for the integral. Write your answer in sigma notation and simplify.
 - (b) What is the radius of convergence of the series found in part (a)? Explain your answer.

(c) Find a series representation for $\int_0^{\frac{1}{7}} \arctan(5x) dx$. Write your answer in sigma notation and simplify.

Solution:

(a) Recall the MacLaurin Series for $\arctan(x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ with R = 1. So, we have

$$\int \arctan(5x) \, dx = \int \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} (5x)^{2n+1} \right] \, dx$$
$$= \int \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} 5^{2n+1} x^{2n+1} \right] \, dx$$
$$= \left[C + \sum_{n=0}^{\infty} \frac{(-1)^n 5^{2n+1}}{(2n+1)(2n+2)} x^{2n+2} \right]$$

(b) Because the arctan(x) series converges for |x| < 1, it follows that the arctan(5x) series converges for |5x| < 1 ⇒ |x| < 1/5 and its radius of convergence is R = 1/5. Integrating a power series does not change the radius of convergence, so the series found in part (a) also has a radius of R = 1/5.</p>

(c)

$$\int_{0}^{\frac{1}{7}} \arctan(5x) \, dx = \left[\sum_{n=0}^{\infty} \frac{(-1)^n \, 5^{2n+1}}{(2n+1)(2n+2)} x^{2n+2} \right]_{0}^{\frac{1}{7}}$$
$$= \left[\sum_{n=0}^{\infty} \frac{(-1)^n \, 5^{2n+1}}{(2n+1)(2n+2) \, 7^{2n+2}} \right]$$

- 3. (24 pts) Let $f(x) = \sqrt{x}$.
 - (a*) Find the Taylor polynomial $T_2(x)$ for f(x), centered at a = 1.
 - (b*) Use $T_2(x)$ to approximate the value of $\sqrt{\frac{11}{10}}$. Simplify your answer.
 - (c*) Use Taylor's Formula to find an error bound for the approximation found in part (b). Simplify your answer.

Solution:

$$f(x) = x^{1/2}, \ f'(x) = \frac{1}{2}x^{-1/2}, \ f''(x) = -\frac{1}{4}x^{-3/2}, \ f^{(3)}(x) = \frac{3}{8}x^{-5/2}.$$
 (a)

$$T_2(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2$$
$$= f(1) + f'(1)(x-1) + \frac{f''(1)}{2}(x-1)^2$$

Substituting f(1) = 1, $f'(1) = \frac{1}{2}$, and $f''(1) = -\frac{1}{4}$ gives

$$T_2(x) = \left[1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2\right].$$

(b)

$$\sqrt{\frac{11}{10}} = f\left(\frac{11}{10}\right) \approx T_2\left(\frac{11}{10}\right) = 1 + \frac{1}{2}\left(\frac{11}{10} - 1\right) - \frac{1}{8}\left(\frac{11}{10} - 1\right)^2$$
$$= 1 + \frac{1}{20} - \frac{1}{800} = \boxed{\frac{839}{800}}.$$

(c)

$$\left| R_2\left(\frac{11}{10}\right) \right| = \left| \frac{f^{(3)}(z)}{3!} \left(\frac{11}{10} - 1\right)^3 \right| \quad \text{for some } z \text{ in } \left(1, \frac{11}{10}\right).$$
$$f^{(3)}(z) = \frac{3}{8} z^{-5/2} = \frac{3}{8z^{5/2}}, \text{ which is positive and decreasing on } \left(1, \frac{11}{10}\right),$$

hence

$$\left| f^{(3)}(z) \right| < f^{(3)}(1) = \frac{3}{8}.$$

Therefore

$$\left| R_2\left(\frac{11}{10}\right) \right| < \frac{3/8}{3!}\left(\frac{1}{10}\right)^3 = \boxed{\frac{1}{16,000}}$$

4. (20 pts) Let $g(x) = x^3 e^{2x}$.

- (a) Find the Maclaurin series for g(x). Write your answer in sigma notation and simplify.
- (b*) What is the value of $g^{(13)}(0)$? You do not need to simplify your answer.

(c*) Find the sum of
$$\sum_{n=0}^{\infty} \frac{2^{2n+3}}{n!}$$

Solution:

(a) Recall the Maclaurin Series for e^x is $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ with $R = \infty$. Then

$$g(x) = x^{3}e^{2x} = x^{3}\sum_{n=0}^{\infty} \frac{(2x)^{n}}{n!} = \boxed{\sum_{n=0}^{\infty} \frac{2^{n}x^{n+3}}{n!}}.$$

(b) Note that for n = 10, matching the x^{13} term in the Maclaurin Series formula to the given series gives

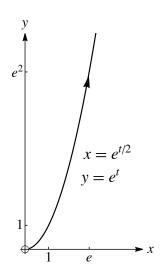
$$\frac{g^{(13)}(0)}{13!}x^{13} = \frac{2^{10}}{10!}x^{13}.$$

Solving, we have $g^{(13)}(0) = \boxed{\frac{2^{10} \cdot 13!}{10!}} = 2^{10} \cdot 13 \cdot 12 \cdot 11.$ (c) This sum is our series with x = 2. Thus, $\sum_{n=0}^{\infty} \frac{2^{2n+3}}{n!} = g(2) = 2^3 e^4 = \boxed{8e^4}.$

- 5. (16 pts) Consider the parametric curve defined by $x = e^{t/2}$, $y = e^t$.
 - (a) Sketch the curve. Find and label all intercepts. Indicate with an arrow the direction of motion as tincreases.
 - (b*) Eliminate the parameter to find a Cartesian equation y = f(x) of the curve.

Solution:

(a)



The graph has no intercepts because x > 0, y > 0 for all values of t.

(b)
$$x = e^{t/2} \implies t = 2 \ln x$$

 $y = e^t = e^{2 \ln x} = e^{\ln x^2} = x^2$
The Cartesian equation is $y = x^2, x > 0$.