1. (24 pts) Consider the region \mathcal{R} in the first quadrant bounded above by $y=\cosh x$, below by $y=1$, and on the right by $x=\ln 2$.
(a) Sketch and shade the region \mathcal{R}.
(b) Set up but do not evaluate integrals to determine each of the following:
I. The volume of the solid generated by rotating \mathcal{R} about the y-axis.
II. The volume of the solid generated by rotating \mathcal{R} about the line $y=3$.
III. The length of the curve $y=\cosh x$ for $0 \leq x \leq \ln 2$. (Simplify the integrand, eliminating all square roots.)
2. (14 pts) Find the surface area when $y=6 \sqrt{x+7}$ from $x=0$ to 9 is rotated about the x-axis. Evaluate the corresponding integral.
3. (18 pts) The following two problems are not related.
(a) Masses $m_{1}=3$ and $m_{2}=k$ are located at $(k,-8)$ and $(1,3 k)$, respectively. The moment M_{x} of the system equals $6 k$. What is the value of k ?
(b) Solve the initial value problem. Simplify your answer and express it in the form $y=f(x)$.

$$
\frac{\csc ^{2} x}{y} \cdot \frac{d y}{d x}=\sec ^{2} x, \quad y\left(\frac{\pi}{4}\right)=e^{-\pi / 4}
$$

4. (24 pts) The following two problems are not related.
(a) Does $\sum_{n=1}^{\infty} \frac{5+3^{n}}{4^{n}}$ converge or diverge? If it converges, find the sum.
(b) i. Is $\left\{\frac{\pi n}{1-2 n}\right\}$ monotonic? Justify your answer.
ii. Does $\sum_{n=1}^{\infty} \sin \left(\frac{\pi n}{1-2 n}\right)$ converge or diverge? If it converges, find the sum.
5. (20 pts) Suppose $\sum_{n=1}^{\infty} a_{n}$ is a series such that the corresponding sequence of partial sums is given by

$$
s_{n}=\arctan \left(\frac{n^{2}+2}{7-3 n}\right) .
$$

(a) Find a_{1} and a_{2}, the first two terms of the series. You may leave your answer unsimplified.
(b) Does $\sum_{n=1}^{\infty} a_{n}$ converge? If so, to what does it converge? Justify your answer.
(c) Does $\left\{a_{n}\right\}$ converge? If so, to what does it converge? Justify your answer.

