APPM 1360 Exam 1

Spring 2022

1. (26 pts) Evaluate the integral.
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Solve A (2% 4+ 5) + z(Bz + C) = 22 — 3z + 10 to find the values A = 2, B =0, and C = —3.
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2. (20 pts) This problem has three parts.

4
Let f(z) =1+1In (L) Consider the integral / f(z)dx.
x 1

(a) Estimate the value of the integral using 73, the trapezoidal approximation with n = 3 subintervals. Fully
simplify your answer by combining logarithms.

(b) Given that —% < f(z) < —% for 1 < z < 4, how large should n be to ensure that the approximation error
for T}, is within 10~4? Simplify your answer.

(c) Is the T3 approximation found in part (a) an underestimate or overestimate? Justify your answer. (Hint: It is
not necessary to find the exact value of the integral.)

Solution:

(a) Let Az = =2 = 3 = 1. Then
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(b) Let K = 3, the maximum value of | f”|. Solve this inequality for n:
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(c) Because f” < 0on [1,4], the curve y = f(x) is concave down. The trapezoids all lie below the curve, so T3

is an | underestimate |.



3. (30 pts) The following three problems are not related.
(a) Find the value of sin™! (cot (cos_1 (1/\/5)))
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(b) Evaluate / 6ze 2" dz. Justify any indeterminate limits.
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(c) Does / WZB converge or diverge? Justify your answer.
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Solution:

(a) Let# = cos™! (1/v/5). Then cos @ = 1/v/5. A reference triangle shows that cot 6 = 1/2, so sin™*(cot §) =

sin~!(1/2) = | 7/6]
\5

Note: Because cos § > 0, the angle 6 is in the first quadrant.

(b) We will use integration by parts with « = 62 and dv = e~ 2* dx. Then du = 6 dz and v = —%e_%.
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because 1tlim e 2! = 0. Apply L’Hospital’s Rule to the indeterminate limit to get
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Therefore the integral converges to .
(c) By the Comparison Theorem, because
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and / - —dx is a convergent p-integral (p = 5 > 1), the integral / - 7dw also is | convergent
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4. (24 pts) Consider the region R bounded by y = 4\/x, z = 0, and y = 1.

(a) Sketch and shade the region R.
(b) Set up but do not evaluate integrals to determine each of the following:

I. The area of 'R using integration with respect to x.
II. The area of R using integration with respect to y.
III. The volume of the solid when R is rotated about y = 1 using the disk method.

Solution:

(a) Note that the curve y = 4./ intersects the line y = 1 when 4/z = 1 = = = 1.

2
y > 0.

The curve can be represented as © = 11/—6,
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