1. (26 pts) Evaluate the integral.

(a)
$$\int \frac{2x^2 - 3x + 10}{x^3 + 5x} \, dx$$

(b)
$$\int \frac{1}{(x^2-1)^{3/2}} dx$$

2. (20 pts) This problem has three parts.

Let
$$f(x) = 1 + \ln\left(\frac{x}{x+1}\right)$$
. Consider the integral $\int_1^4 f(x) \, dx$.

- (a) Estimate the value of the integral using T_3 , the trapezoidal approximation with n=3 subintervals. Fully simplify your answer by combining logarithms.
- (b) Given that $-\frac{3}{4} \le f''(x) < -\frac{1}{50}$ for $1 \le x \le 4$, how large should n be to ensure that the approximation error for T_n is within 10^{-4} ? Simplify your answer.
- (c) Is the T_3 approximation found in part (a) an underestimate or overestimate? Justify your answer. (*Hint:* It is not necessary to find the exact value of the integral.)
- 3. (30 pts) The following three problems are not related.
 - (a) Find the value of $\sin^{-1} \left(\cot \left(\cos^{-1} \left(1/\sqrt{5}\right)\right)\right)$.
 - (b) Evaluate $\int_0^\infty 6xe^{-2x} dx$. Justify any indeterminate limits.
 - (c) Does $\int_{1}^{\infty} \frac{dx}{\sqrt{x}(1+x^{5})}$ converge or diverge? Justify your answer.
- 4. (24 pts) Consider the region \mathcal{R} bounded by $y=4\sqrt{x}, x=0,$ and y=1.
 - (a) Sketch and shade the region \mathcal{R} .
 - (b) Set up but do not evaluate integrals to determine each of the following:
 - I. The area of \mathcal{R} using integration with respect to x.
 - II. The area of \mathcal{R} using integration with respect to y.
 - III. The volume of the solid when \mathcal{R} is rotated about y=1 using the disk method.