1. (26 pts) Evaluate the integral.
(a) $\int \frac{2 x^{2}-3 x+10}{x^{3}+5 x} d x$
(b) $\int \frac{1}{\left(x^{2}-1\right)^{3 / 2}} d x$
2. (20 pts) This problem has three parts.

Let $f(x)=1+\ln \left(\frac{x}{x+1}\right)$. Consider the integral $\int_{1}^{4} f(x) d x$.
(a) Estimate the value of the integral using T_{3}, the trapezoidal approximation with $n=3$ subintervals. Fully simplify your answer by combining logarithms.
(b) Given that $-\frac{3}{4} \leq f^{\prime \prime}(x)<-\frac{1}{50}$ for $1 \leq x \leq 4$, how large should n be to ensure that the approximation error for T_{n} is within 10^{-4} ? Simplify your answer.
(c) Is the T_{3} approximation found in part (a) an underestimate or overestimate? Justify your answer. (Hint: It is not necessary to find the exact value of the integral.)
3. (30 pts) The following three problems are not related.
(a) Find the value of $\sin ^{-1}\left(\cot \left(\cos ^{-1}(1 / \sqrt{5})\right)\right)$.
(b) Evaluate $\int_{0}^{\infty} 6 x e^{-2 x} d x$. Justify any indeterminate limits.
(c) Does $\int_{1}^{\infty} \frac{d x}{\sqrt{x}\left(1+x^{5}\right)}$ converge or diverge? Justify your answer.
4. (24 pts) Consider the region \mathcal{R} bounded by $y=4 \sqrt{x}, x=0$, and $y=1$.
(a) Sketch and shade the region \mathcal{R}.
(b) Set up but do not evaluate integrals to determine each of the following:
I. The area of \mathcal{R} using integration with respect to x.
II. The area of \mathcal{R} using integration with respect to y.
III. The volume of the solid when \mathcal{R} is rotated about $y=1$ using the disk method.

