

1. (28 pts) Consider the shaded region \mathcal{R} shown below, bounded by $y = \sin(x)$ and $y = \sin(2x)$.

- (a) The shaded region extends from x = a to x = b. Determine the values of a and b.
- (b) Set up (but <u>do not evaluate</u>) integrals to find the following quantities.
 - i. The volume of the solid obtained by rotating \mathcal{R} about the line x = b.
 - ii. The area of the surface generated by rotating $y = \sin(2x)$, $a \le x \le b$, about the horizontal line tangent to the upper boundary of region \mathcal{R} .
 - iii. The volume of the solid with R as the base and cross-sections perpendicular to the x-axis in the shape of right trapezoids.
 (Side view of sample cross-sections shown.) The parallel sides of each trapezoid extend up out of region R, with one side twice as long as the other. A third side is in region R and has length equal to the shorter parallel side.

- x

у 8

2. (8 pts) Region S, shown at right, is formed by joining a right trapezoid to a semicircular region. The vertices of the trapezoid are (1,0), (5,0), (5,8), and (1,4). Set up (but <u>do not evaluate</u>) an integral to find M_y , the moment of region S about the y-axis. Assume S has uniform density ρ .

3. (14 pts) Solve for y in the differential equation given the initial condition y(0) = e.

$$\frac{dy}{dx} = y\left(1 + (\ln y)^2\right)$$

- 4. (32 pts) The following four problems are not related. Justify your answers to the following questions.
 - (a) Does $a_m = m^2 \sin (3/m^2)$ converge? If so, what does it converge to?
 - (b) Is the sequence $b_n = \frac{\sqrt{n+3}}{\sqrt{n+4}}$ monotonic?

(c) Does the series $\sum_{n=1}^{\infty} \frac{1}{n(1+(\ln n)^2)}$ converge? (*Hint:* You may refer to other solutions in this exam.)

- (d) Are there values of k for which $\sum_{n=1}^{\infty} \frac{2^{3+n}}{k^{-n}}$ converges? If so, determine all such values of k and find the sum of the series. If not, explain why.
- 5. (18 pts) Justify your answers to the following questions.
 - (a) Consider the series $\sum_{n=1}^{\infty} \left(\ln \left(\frac{1}{n^2} \right) \ln \left(\frac{1}{n} \right) \right)$.
 - i. Find s_3 , the third partial sum of the series. Write your answer as a single logarithm.
 - ii. Does the series converge? If so, what does it converge to?

(b) Consider the series
$$\sum_{n=1}^{\infty} \left(\cos\left(\frac{\pi}{n}\right) - \cos\left(\frac{\pi}{n+1}\right) \right)$$
.

- i. Find s_3 , the third partial sum of the series. Simplify your answer.
- ii. Does the series converge? If so, what does it converge to?