1. (36 pts) Evaluate the integral.

(a) 
$$\int \frac{3x^2 - 2x + 12}{x^3 + 4x} \, dx$$

(b) 
$$\int 2x \arctan(x) dx$$

(c) 
$$\int \frac{dx}{x^2 \sqrt{x^2 - 9}}$$

## **Solution:**

(a) Use partial fraction decomposition.

$$\int \frac{3x^2 - 2x + 12}{x^3 + 4x} dx = \int \frac{3x^2 - 2x + 12}{x(x^2 + 4)} dx$$
$$= \int \left(\frac{A}{x} + \frac{Bx + C}{x^2 + 4}\right) dx$$

Solve  $A(x^2 + 4) + (Bx + C)x = 3x^2 - 2x + 12$ .

The coefficients are A=3, B=0, C=-2.

$$= \int \left(\frac{3}{x} - \frac{2}{x^2 + 4}\right) dx$$
$$= 3\ln|x| - \arctan\frac{x}{2} + C$$

(b) Apply Integration by Parts with  $u = \arctan x$ , dv = 2x dx.

$$\int \underbrace{\frac{2x}{v=x^2}}_{\substack{v=x^2\\dv=2x \ dx}} \underbrace{\arctan x}_{\substack{u=\arctan x\\du=\frac{dx}{1+x^2}}} dx \stackrel{IBP}{=} x^2 \arctan x - \int \frac{x^2}{1+x^2} dx$$
$$= x^2 \arctan x - \int \left(1 - \frac{1}{1+x^2}\right) dx$$
$$= x^2 \arctan x - x + \arctan x + C$$

(c) Let  $x = 3 \sec \theta$ ,  $dx = 3 \sec \theta \tan \theta d\theta$ .

$$\int \frac{dx}{x^2 \sqrt{x^2 - 9}} = \int \frac{3 \sec \theta \tan \theta}{9 \sec^2 \theta \sqrt{9 \sec^2 \theta - 9}} d\theta$$
$$= \int \frac{3 \sec \theta \tan \theta}{9 \sec^2 \theta (3 \tan \theta)} d\theta$$
$$= \int \frac{\tan \theta}{3 \sec \theta (3 \tan \theta)} d\theta$$
$$= \int \frac{1}{9 \sec \theta} d\theta$$

$$= \int \frac{1}{9} \cos \theta \, d\theta$$
$$= \frac{1}{9} \sin \theta + C$$
$$= \left[ \frac{1}{9} \frac{\sqrt{x^2 - 9}}{x} + C \right]$$



- 2. (16 pts) Consider the integral  $\int_0^{3\pi/4} x \sin^2(x) dx$ .
  - (a) Estimate the integral using the trapezoidal approximation  $T_3$ . Fully simplify your answer.
  - (b) Estimate the error  $|E_T|$  in the approximation  $T_3$ . Leave your answer unsimplified. Hint: Let  $f(x) = x \sin^2(x)$ . Then  $f'(x) = x \sin(2x) - \frac{1}{2}\cos(2x) + \frac{1}{2}$ .

**Solution:** 

(a) Let 
$$\Delta x = \frac{3\pi/4}{3} = \frac{\pi}{4}$$
.

$$T_3 = \frac{1}{2} (\Delta x) \left[ f(0) + 2f\left(\frac{\pi}{4}\right) + 2f\left(\frac{\pi}{2}\right) + f\left(\frac{3\pi}{4}\right) \right]$$
$$= \frac{1}{2} \cdot \frac{\pi}{4} \left[ 0 + 2\left(\frac{\pi}{8}\right) + 2\left(\frac{\pi}{2}\right) + \frac{3\pi}{8} \right]$$
$$= \boxed{13\pi^2/64}$$

(b) Use the formula  $|E_T| \leq \frac{K(b-a)^3}{12n^2}$  where  $K \geq |f''(x)|$ .

$$f(x) = x \sin^{2}(x)$$

$$f'(x) = x \sin(2x) - \frac{1}{2}\cos(2x) + \frac{1}{2}$$

$$f''(x) = 2x \cos(2x) + 2\sin(2x)$$

Then

$$|f''(x)| = |2x\cos(2x) + 2\sin(2x)|$$

$$\leq 2|x| |\cos(2x)| + 2|\sin(2x)|$$

$$\leq 2 \cdot \frac{3\pi}{4} \cdot 1 + 2 \cdot 1$$

$$= \frac{3\pi}{2} + 2.$$

Let  $K = \frac{3\pi}{2} + 2$ . An error estimate for  $T_3$  is

$$|E_T| \le \boxed{\frac{\left(\frac{3\pi}{2} + 2\right)\left(\frac{3\pi}{4}\right)^3}{12(3^2)}}.$$

2

- 3. (24 pts) Consider the region bounded above by  $y = 2 + \ln x$ , below by the line y = 2, and on the right by the line x = e.
  - (a) Sketch and shade the region.
  - (b) Set up (but <u>do not evaluate</u>) integrals to find the following quantities:
    - i. The area of the region, integrating with respect to x.
    - ii. The area of the region, integrating with respect to y.
    - iii. The volume of the solid generated by rotating the region about the line y = -1.

## **Solution:**

(a)



- (b) i. The area is  $A = \int_1^e \ln x \, dx$ .
  - ii.  $y = 2 + \ln x \implies x = e^{y-2}$ , so the area is  $A = \int_2^3 (e e^{y-2}) dy$ .
  - iii. Using the washer method, the volume of the generated solid is

$$V = \int_{a}^{b} \pi \left( R^{2} - r^{2} \right) dx = \int_{1}^{e} \pi \left( (3 + \ln x)^{2} - 3^{2} \right) dx.$$

- 4. (24 pts) The following problems are not related.
  - (a) Determine whether  $\int_{1}^{\infty} \frac{dx}{x \arctan(x)}$  is convergent or divergent. Justify your answer.
  - (b) Evaluate  $\int_0^{100} \frac{dx}{(x-a)^2}$  for 0 < a < 100. Is the integral convergent or divergent?

## **Solution:**

(a) For  $x \ge 1$ ,

$$\arctan x < \frac{\pi}{2} \Rightarrow \frac{1}{\arctan x} > \frac{2}{\pi} \Rightarrow \frac{1}{x \arctan x} > \frac{2}{\pi x} > 0.$$

Because

$$\int_{1}^{\infty} \frac{2}{\pi x} dx = \frac{2}{\pi} \int_{1}^{\infty} \frac{dx}{x}$$

is a constant multiple of a divergent p-integral (p=1), by the Comparison Theorem  $\int_1^\infty \frac{dx}{x \arctan x}$  also is divergent.

Note that the function  $1/(x \arctan x)$  is less than the function 1/x on the interval  $[2, \infty)$ , so a direct comparison with 1/x will not produce a conclusive result.



(b) Split the integral at the vertical asymptote at x = a.

$$\int_{0}^{100} \frac{dx}{(x-a)^{2}} = \underbrace{\int_{0}^{a} \frac{dx}{(x-a)^{2}}}_{I_{1}} + \underbrace{\int_{a}^{100} \frac{dx}{(x-a)^{2}}}_{I_{2}}$$

$$I_{1} = \int_{0}^{a} \frac{dx}{(x-a)^{2}} = \lim_{t \to a^{-}} \int_{0}^{t} \frac{dx}{(x-a)^{2}}$$

$$= \lim_{t \to a^{-}} \left[ \frac{-1}{x-a} \right]_{0}^{t}$$

$$= \lim_{t \to a^{-}} \left( \frac{-1}{t-a} - \frac{1}{a} \right) = \infty$$

Therefore 
$$\int_0^{100} \frac{dx}{(x-a)^2}$$
 is divergent.

It is also possible to show that the given integral is divergent by evaluating  $I_2$ .

$$I_2 = \int_a^{100} \frac{dx}{(x-a)^2} = \lim_{t \to a^+} \int_t^{100} \frac{dx}{(x-a)^2}$$
$$= \lim_{t \to a^+} \left[ \frac{-1}{x-a} \right]_t^{100}$$
$$= \lim_{t \to a^+} \left( \frac{-1}{100-a} + \frac{1}{t-a} \right) = \infty$$

Note that a comparison with  $1/x^2$  will not determine whether the given integral is convergent or divergent.

