
APPM 1360 Final Exam Fall 2023

1. (34 points) Find the requested information. The problems are unrelated.

(a) Evaluate
∫

tan−1(x)

x2
dx (Hint: Start with IBP)

(b) Find y as a function of x given that
dy

dx
= 2x

√
1− y2 and y(0) = 1

(c) Find the sum of the series −x6

3!
+

x10

5!
− x14

7!
+ · · ·

(d) For what values of θ does the series
∞∑
n=0

sin2(θ) cos2n(θ) converge? Find the sum for those values of θ.

Solution:

(a) We need to use integration by parts. We set u = tan−1(x), du =
1

1 + x2
dx, dv = x−2dx and v = −x−1.

Then, ∫
tan−1(x)

x2
dx = −tan−1(x)

x
+

∫
1

x(1 + x2)
dx

Use partial fractions on

1

x(1 + x2)
=

A

x
+

Bx+ C

1 + x2

to obtain

1 = A(1 + x2) + (Bx+ C)x = A+ Cx+ (A+B)x2

Collecting terms gives A = 1, B = −1, and C = 0. Then,∫
1

x2(1 + x2)
dx =

∫ (
1

x
− x

1 + x2

)
dx

= ln |x| − 1

2
ln(1 + x2) + C.

Putting it all together gives:∫
tan−1(x)

x2
= −tan−1(x)

x
+ ln |x| − 1

2
ln(1 + x2) + C.

(b) Using separation of variables, we have ∫
1√

1− y2
dy =

∫
2x dx.

The second integral is simply ∫
2x dx = x2 + C.
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The first integral can be handled with a trig sub of y = sin θ which gives dy = cos θ dθ and
√
1− y2 = cos θ.

Plugging these substitutions in yields∫
1√

1− y2
dy =

∫
1

cos θ
cos θ dθ =

∫
dθ = θ = sin−1 y.

Combining everything, the general solution to the ODE is

sin−1 y = x2 + C =⇒ y = sin(x2 + C).

Using the initial condition y(0) = 1 gives 1 = sin(C) which implies C = π
2 . Then, we have

y = sin
(
x2 +

π

2

)
= cos(x2).

Although separation of variables gave us the solution above, there are a few other solutions. In particular
y = 1 also solves the initial value problem.

(c) We have

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!

Then,

sin(x2) =

∞∑
k=0

(−1)k(x2)2k+1

(2k + 1)!

= x2 − x6

3!
+

x10

5!
− x14

7!
+ · · ·

Thus, we have −x6

3!
+

x10

5!
− x14

7!
+ · · · = sin(x2)− x2

(d) Note that

∞∑
n=0

sin2(θ) cos2n(θ) =

∞∑
n=0

sin2(θ)(cos2(θ))n

is a geometric series with r = cos2(θ). If −1 < cos(θ) < 1 then

∞∑
n=0

sin2(θ)(cos2(θ))n =
sin2(θ)

1− cos2(θ)
=

sin2(θ)

sin2 θ
= 1

If cos(θ) = ±1 then sin(θ) = 0, so
∞∑
n=0

sin2(θ) cos2n(θ) = 0

So, the series converges for all values of θ with two possible sums

∞∑
n=0

sin2(θ) cos2n(θ) =

{
0, θ = Nπ, N = 0,±1,±2, . . .

1, otherwise
.

2. (16 points) Decide whether the following quantities are convergent or divergent. Explain your reasoning and name
any test you use.
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(a) The sequence given by an =

(
1− ln(3)

n

)n

, for n = 1, 2, . . .

(b)
∫ ∞

1

1

x2

√
1 +

3

x3
dx

Solution:

(a) Let

L = lim
n→∞

(
1− ln(3)

n

)n

.

Then

lnL = lim
n→∞

n ln

(
1− ln(3)

n

)
= lim

n→∞

ln
(
1− ln(3)

n

)
1
n

=
0

0
.

To get our limit out of an indeterminate form, we can use L’Hôpital’s rule

lnL
LH
= lim

n→∞

ln(3)
n2

1

1− ln(3)
n

− 1
n2

= − ln(3) lim
n→∞

1

1− ln(3)
n

= − ln(3) = ln

(
1

3

)
.

Solving for our limit L gives

L = eln(
1
3) =

1

3

meaning the sequence converges to 1
3 .

(b) The integrand is continuous, positive, decreasing and

1

x2

√
1 +

3

x3
≤ 1

x2

√
1 +

3

13
=

2

x2

for x ≥ 1. Further
∫ ∞

1

2

x2
dx is a convergent p-integral with p = 2. By the integral comparison test,

∫ ∞

1

1

x2

√
1 +

3

x3
dx

must converge.

3. (12 points) Consider the series
∞∑
k=1

bk. Suppose the nth partial sum of the series is sn = 2− 2

n+ 1
.

(a) What is s3?

(b) Find a simple formula for bn.

(c) What does {bn} converge to?

(d) What is the sum of the series
∞∑
k=1

bk?

Solution:

(a) s3 = 3/2
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(b) We note that sn =
n∑

k=1

bk and

sn − sn−1 =

n∑
k=1

bk −
n−1∑
k=1

bk = bn

Therefore,

bn = sn − sn−1 = 2− 2

n+ 1
−

(
2− 2

n

)
=

2

n(n+ 1)

(c) lim
n→∞

bn = lim
n→∞

2

n(n+ 1)
= 0

(d)
∞∑
k=1

bk = lim
n→∞

sn = lim
n→∞

2

n(n+ 1)
= 2

4. (25 points) Recall cosh(x) =
ex + e−x

2
.

(a) Find the MacLaurin series of the hyperbolic cosine function.

(b) Find the interval of convergence for the power series from part (a).

(c) Find T3(x), the Taylor polynomial of order 3, of the hyperbolic cosine centered at a = 0. Use the Taylor
Remainder formula to find an upper bound for the absolute error if T3(x) is used to approximate cosh(1).

(d) Use the MacLaurin series (not L’Hôpital!) to evaluate the following limit:

lim
x→0

cosh(x)− 1− x2

2

x4
.

Solution:

(a) There are two ways to find the MacLaurin series of cosh(x). One way is to use the definition of ex =

∞∑
k=0

xk

k!
so

cosh(x) =
ex + e−x

2
=

1

2

[ ∞∑
k=0

xk

k!
+

∞∑
k=0

(−1)kxk

k!

]
=

∞∑
k=0

1 + (−1)k

2(k!)
xk =

∞∑
k=0

x2k

(2k)!

The second way to find the MacLaurin series of cosh(x) is to calculate the derivatives of cosh(x) at x = 0

and use the definition of the MacLaurin series
∞∑
k=0

f (k)(0)xk

k!
.

(b) Use the ratio test to find the interval of convergence:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x2(n+1)

(2(n+ 1))!
· (2n)!)

x2n

∣∣∣∣∣ = lim
n→∞

x2

(2n+ 2)(2n+ 1)
= 0

Thus, the interval of convergence is all real numbers, −∞ < x < ∞ .
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(c) T3(x) = 1 +
x2

2!
. The Taylor Remainder formula for this problem is given by:

R3(x) =
f (4)(z)

4!
x4

where z is between a = 0 and 1. We also note that the fourth derivative of cosh(x) is also cosh(x). Thus,

|R3(x)| =

∣∣∣∣∣f (4)(z)

4!
x4

∣∣∣∣∣ ≤ cosh(1)

4!

(d) Using the series from part (a), we have

cosh(x) =
∞∑
k=0

x2k

(2k)!
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ · · ·

Substituting this into the limit, we find

lim
x→0

cosh(x)− 1− x2

2

x4
= lim

x→0

(
1 + x2

2! +
x4

4! +
x6

6! + · · ·
)
− 1− x2

2

x4

= lim
x→0

x4

4! +
x6

6! + · · ·
x4

= lim
x→0

x4
(

1
4! +

x2

6! + · · ·
)

x4

= lim
x→0

1

4!
+

x2

6!
+ · · · = 1

4!
=

1

24

5. (18 points) Suppose g(x) equals the power series
∞∑
n=2

(n+ 1)(x+ b)n

c2n
, where b and c are constants, and the

series has an interval of convergence of −6 < x < 2.

(a) Find the center and radius of convergence of the series.

(b) Evaluate
∫

g(x) dx as a power series.

(c) Given the interval of convergence, find possible values for b and c. Justify your answer using appropriate
test(s).

Solution:

(a) The interval −6 < x < 2 corresponds to the interval |x− a| < R with center a = −2 and radius R = 4 .

(b)
∫

g(x) dx =

∫ ∞∑
n=2

(n+ 1)(x+ b)n

c2n
dx = C +

∞∑
n=2

n+ 1

c2n
· (x+ b)n+1

n+ 1
= C +

∞∑
n=2

(x+ b)n+1

c2n

(c) A power series
∑

cn(x− a)n converges for |x− a| < R. Since the center of the given series is a = −2, the

constant b = 2 . Apply the Ratio Test to find the constant c.

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 2)(x+ 2)n+1

c2n+2
· c2n

(n+ 1)(x+ 2)n

∣∣∣∣
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= lim
n→∞

∣∣∣∣n+ 2

n+ 1
· x+ 2

c2

∣∣∣∣ = ∣∣∣∣x+ 2

c2

∣∣∣∣ < 1 ⇒ |x+ 2| < c2.

This interval corresponds to |x− a| < R so c2 = R = 4 ⇒ c = 2 or c = −2 for absolute convergence.
At the endpoints of the interval, x = −6 and x = 2, the power series is divergent because both series∑

(−(n+ 1)) and
∑

(n+ 1) diverge by the Test for Divergence.

6. (25 points) For this problem, let r = tan(θ) for −π/2 < θ < π/2. The polar graph (in the xy plane) is given
below. Answer the following questions.

(a) Find an equation for the tangent line at θ = π/4.

(b) Set up an integral to find the length of the curve r = tan(θ) for 0 ≤ θ ≤ π/4.

(c) Add a graph of the polar curve θ = π/4 to the given graph of r = tan(θ).

(d) Find the area of the region bounded by the two curves θ = π/4 and r = tan(θ)

Solution:

(a) To find a tangent line, we will need r′ and dy
dx given by

r′ = sec2 θ

and
dy

dx
=

r′ sin θ + r cos θ

r′ cos θ − r sin θ
=

sec2 θ sin θ + tan θ cos θ

sec2 θ cos θ − tan θ sin θ
=

sec θ tan θ + sin θ

cos θ
.

Plugging in θ = π/4 yields

dy

dx

∣∣∣
θ=π/4

=

√
2 + 1√

2
1√
2

= 3.

In polar, the tangent line touches our curve at (r, θ) = (tan(π/4), π/4) = (1, π/4); in Cartesian, that point
is given by (x, y) = (1/

√
2, 1/

√
2). Then the tangent line is given by

y − 1√
2
= 3

(
x− 1√

2

)
=⇒ y = 3x−

√
2.

(b) Graphing θ = π/4 (which is equivalent to y = x) on the curve above gives us
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(c) To compute the length of a polar curve, we need

ds =
√

r2 + (r′)2 dθ =
√
tan2 θ + sec4 θ dθ.

With the length element ds, the arc length is given by

L =

∫ b

a
ds =

∫ π/4

0

√
tan2 θ + sec4 θ dθ.

(d) The area, A, is given by

A =
1

2

∫ π/4

0
tan2(θ) dθ

=
1

2

∫ π/4

0
(sec2(θ)− 1) dθ

=
1

2
(tan(θ)− θ)

∣∣∣∣π/4
0

=
1

2
− π

8
.

7. (20 points) An equation for an ellipse in parametric form is given by{
x = 2 cos t

y = 4 sin t
, 0 ≤ t ≤ 2π.

(a) Graph the ellipse labeling the axes and vertices.

(b) Eliminate t to find a Cartesian equation in standard form for the ellipse above.

(c) Rotate the area in the upper half-plane between the ellipse and the x-axis around the line x = 3 and find the
volume. Set up, but do not evaluate, an integral to find the volume of the solid.

(d) Rotate the area bounded by the entire ellipse around the line x = 3. Set up, but do not evaluate, an integral
to find the surface area of the solid.

Solution:

(a) The ellipse has major vertices at a = ±4 and minor vertices at b = ±2. Graphing the parametric equation
above yields
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(b) There are many ways to reduce the parametric equation to standard Cartesian form. One of the fastest routes
is to note that

(2x)2 + y2 = 4x2 + y2 = 4(2 cos t)2 + (4 sin t)2 = 16(sin2 t+ cos2 t) = 16.

Then, rearranging the equation above yields

x2

4
+

y2

16
= 1.

(c) From the previous part, the top half of the ellipse is given by

y = 4

√
1− x2

4
= 2

√
4− x2.

Using cylindrical shells, the volume described can be computed via

V =

∫ b

a
2πrhdx = 4π

∫ 2

−2
(3− x)

√
4− x2 dx

= 12π

∫ 2

−2

√
4− x2 dx− 4π

∫ 2

−2
x
√

4− x2 dx

where the first integral is just the area of a circle with radius 2 (i.e. A = 1
2π2

2 = 2π) and the second integral
is zero since the bounds are symmetric and the function is odd. Plugging these two values in gives

V = 12π · 2π − 4π · 0 = 24π2.

Note that the volume swept out by rotating the entire ellipse around the line x = 3 is the length of the central
circle (= 6π) times the area of the ellipse (= π × 2× 4). The upper half of this has volume 24π.

(d) To compute the surface area, we need the length element which requires the derivative

y′ = − 2x√
4− x2

= − x√
1− x2

4

.

Using this derivative, we can compute the length element as

ds =
√
1 + (y′)2dx =

√
1 +

4x2

4− x2
dx.
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Using the length element in our surface area formula yields

SA = 2

∫ b

a
2πr ds = 4π

∫ 2

−2
(3− x)

√
1 +

4x2

4− x2
dx.

You can also integrate dy, which requires

x = ±1

2

√
16− y2.

The length element is

ds =
√

1 + (x′)2dy =

√
1 +

y2

64− 4y2
dy

The total SA is the following sum of two integrals

SA = 2π

∫ 4

−4

(
3− 1

2

√
16− y2

)√
1 +

y2

64− 4y2
dy + 2π

∫ 4

−4

(
3 +

1

2

√
16− y2

)√
1 +

y2

64− 4y2
dy

Part of the integrand cancels leaving

SA = 12π

∫ 4

−4

√
1 +

y2

64− 4y2
dy.
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