1. (28 points, 7 points each) Decide whether the following quantities are convergent or divergent. Explain your reasoning and name any test you use.
(a) $\int_{0}^{\infty} \frac{e^{x}}{e^{2 x}+1} d x$
(b) The sequence given by $a_{n}=\frac{(\ln n)^{200}}{n}$, for $n=1,2, \ldots$
(c) The sequence given by $a_{1}=2$ and $a_{n}=-\frac{a_{n-1}}{3}$ for $n=2,3, \ldots$
(d) $\frac{\pi}{5}+\frac{\pi}{10}+\frac{\pi}{15}+\cdots$

Solution:

(a) Converges. Two possible solutions:
i. Use a u-substitution with $u=e^{x}$ and $d u=e^{x} d x$. Then,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{e^{x}}{e^{2 x}+1} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{e^{x}}{e^{2 x}+1} d x \\
& =\lim _{t \rightarrow \infty} \int_{1}^{e^{t}} \frac{1}{u^{2}+1} d u \\
& =\left.\lim _{t \rightarrow \infty} \tan ^{-1} u\right|_{1} ^{e^{t}} \\
& =\lim _{t \rightarrow \infty}\left[\tan ^{-1}\left(e^{t}\right)-\tan ^{-1}(1)\right] \\
& =\frac{\pi}{2}-\frac{\pi}{4}=\pi / 4
\end{aligned}
$$

ii. Comparison test with

$$
e^{2 x}+1 \geq e^{2 x} \Longleftrightarrow \frac{1}{e^{2 x}+1} \leq \frac{1}{e^{2 x}} \Longleftrightarrow \frac{e^{x}}{e^{2 x}+1} \leq \frac{e^{x}}{e^{2 x}}=\frac{1}{e^{x}} .
$$

We also observe that $\frac{e^{x}}{e^{2 x}+1}>0$ so we can use the Direct Comparison Test. Further,

$$
\int_{0}^{\infty} \frac{1}{e^{x}} d x=\lim _{t \rightarrow \infty} e^{-x} d x=\lim _{t \rightarrow \infty}-\left.e^{-x}\right|_{0} ^{t}=\lim _{t \rightarrow \infty}-e^{-t}+1=1
$$

so the original integral converges.
(b) Converges. We consider $\lim _{x \rightarrow \infty} \frac{(\ln x)^{200}}{x}$, which is an indeterminant of the form $\frac{\infty}{\infty}$. We apply L'Hopital's rule 200 times to obtain

$$
\lim _{x \rightarrow \infty} \frac{(\ln x)^{200}}{x}=\lim _{x \rightarrow \infty} \frac{200(\ln x)^{199}}{x}=\cdots=\lim _{x \rightarrow \infty} \frac{200!\ln x}{x}=\lim _{x \rightarrow \infty} \frac{200!}{x}=0
$$

Thus, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{(\ln n)^{200}}{n}=0$.
(c) Converges. The sequence given by $a_{1}=2$ and $a_{n}=-\frac{a_{n-1}}{3}$ for $n=2,3, \ldots$ is defined recursively. We need to determine it explicitly. We note that $a_{1}=2, a_{2}=-\frac{2}{3}$ and $a_{3}=-\frac{a_{2}}{3}=\frac{2}{3^{2}}$. In general, we see that $a_{n}=(-1)^{n+1} \frac{2}{3^{n-1}}$ and therefore $\lim _{n \rightarrow \infty} a_{n}=0$.
(d) Diverges since $\frac{\pi}{5}+\frac{\pi}{10}+\frac{\pi}{15}+\cdots=\sum_{n=1}^{\infty} \frac{\pi}{5 n}=\frac{\pi}{5} \sum_{n=1}^{\infty} \frac{1}{n}$. We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series and it diverges.
2. (21 points) Consider the curves $y=2 x$ and $y=x e^{x}$ shown below. Let \mathcal{R} be the region in the first quadrant bounded above by $y=2 x$ and below by $y=x e^{x}$.

(a) Find the (x, y) coordinates of all points of intersection of $y=2 x$ and $y=x e^{x}$.
(b) Calculate the area of \mathcal{R}.
(c) Set up, but do not evaluate, an integral that gives the volume obtained by rotating \mathcal{R} about the y-axis.
(d) Set up, but do not evaluate, an integral that gives the volume obtained by rotating \mathcal{R} about $y=2$.

Solution:

(a) To find the x-coordinates of the intersection points, set $2 x=x e^{x}$. This gives $2 x-x e^{x}=x\left(2-e^{x}\right)$. So, the x-coordinates of the two intersection points are $x=0$ and $x=\ln 2$. Substitute these x values into either of the equations to obtain the intersection points of $(0,0)$ and $(\ln 2,2 \ln 2)$.
(b) The area is given by $\int_{0}^{\ln 2}\left(2 x-x e^{x}\right) d x$. We need to use integration by parts on the second part of the integrand. We set $u=x, d u=d x, d v=e^{x} d x$ and $v=e^{x}$. Then,

$$
\begin{aligned}
\int_{0}^{\ln 2}\left(2 x-x e^{x}\right) d x & =\left[x^{2}-x e^{x}+e^{x}\right]_{0}^{\ln 2} \\
& =(\ln 2)^{2}-2 \ln 2+1
\end{aligned}
$$

(c) The requested volume is given using the shell method:

$$
V=2 \pi \int_{0}^{\ln 2} x\left(2 x-x e^{x}\right) d x
$$

(d) The requested volume is found using the washer method:

$$
V=\pi \int_{0}^{\ln 2}\left[\left(2-x e^{x}\right)^{2}-(2-2 x)^{2}\right] d x
$$

3. (21 points) Consider the series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{2}{(n+1)(n+2)}$. Let the partial sum $s_{n}=\sum_{i=1}^{n} a_{i}$.
(a) Write the partial fraction decomposition of a_{n}.
(b) Find a simple expression for s_{n}.
(c) Is $\left\{s_{n}\right\}$ monotonic? Justify your answer.
(d) Is $\left\{s_{n}\right\}$ bounded? If so, find upper and lower bounds for s_{n}.
(e) Does the given series converge? If so, what does it converge to?

Solution:

(a) $a_{n}=\frac{2}{n+1}-\frac{2}{n+2}$
(b) This is a telescoping series and we have

$$
\begin{aligned}
s_{n} & =\left(\frac{2}{2}-\frac{\not 2}{3}\right)+\left(\frac{\not 2}{\beta}-\frac{2}{A}\right)+\left(\frac{21}{A}-\frac{2}{b}\right)+\cdots+\left(\frac{2}{n+1}-\frac{2}{n+2}\right) \\
& =\frac{2}{2}-\frac{2}{n+2}=1-\frac{2}{n+2}
\end{aligned}
$$

(c) The a_{n} terms are all positive so s_{n} is an increasing sequence and therefore monotonic.
(d) s_{n} is bounded below by $a_{1}=1 / 3$ and bounded above by

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{2}{n+2}\right)=1
$$

(e) The series converges to the limit of the partial sums, or 1.
4. (16 Points) Suppose a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has an interval of convergence of $(2,8)$. Use this information to answer the following questions. (No justification is necessary for your answers on this problem.)
(a) Find the center and radius of convergence.
(b) Is $\sum_{n=0}^{\infty} c_{n} 4^{n}$ absolutely convergent, conditionally convergent, divergent, or do you need more information?
(c) For what values of b does $\sum_{n=0}^{\infty} c_{n} b^{n}$ converge?
(d) If the Ratio Test is used to find that the interval of convergence is $(2,8)$, what would $\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|$ equal?

Solution:

(a) The interval $(2,8)$ corresponds to $|x-a|<R$ where the center $a=5$ and the radius $R=3$.
(b) The value $x-5=4$ lies outside the radius of convergence so the series diverges.
(c) Since $b=x-5$, the series converges when $|b|<3$.
(d) Let $L=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|$. From the ratio test, we must have $L|x-a|<1$. Since $a=5$ we have $5-\frac{1}{L}<x<$ $5+\frac{1}{L}$. Further, since the interval of convergence is $(2,8)$, we have $5-\frac{1}{L}=2$ which implies that $L=1 / 3$. (This can also be found by setting $5+\frac{1}{L}=8$.)
5. (20 points) Suppose a function f has $f(1)=\frac{1}{4}$ and the $n^{\text {th }}$ derivative of f is $f^{(n)}(x)=\frac{(-1)^{n} n \text { ! }}{(x+3)^{n+1}}$ for $n=$ $1,2, \ldots, x \neq-3$.
(a) Find the Taylor series of f centered at $a=1$.
(b) Find $T_{2}(x)$, the Taylor polynomial of order 2 , of function $f(x)$ centered at $a=1$.
(c) Use the Taylor Remainder formula to find an estimate for the absolute error if $T_{2}(x)$ is used to approximate $f(2)$.

Solution:

(a) $f(1)=\frac{1}{4}$ and $f^{(n)}(1)=\frac{(-1)^{n} n!}{(1+3)^{n+1}}=\frac{(-1)^{n} n!}{4^{n}}$ So that Taylor series of f centered at $a=1$ is given by

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}(x-1)^{n} & =\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{n!4^{n+1}}(x-1)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}}(x-1)^{n}
\end{aligned}
$$

(b) $T_{2}(x)=\frac{1}{4}-\frac{1}{4^{2}}(x-1)+\frac{1}{4^{3}}(x-1)^{2}$
(c) $R_{2}(x)=\frac{f^{(3)}(z)}{3!}(x-1)^{3}$ where z is some number between 1 and 2 . For $1 \leq z \leq 2$ the third derivative is maximized at 1 , so $\left|f^{(3)}(z)\right|=\left|\frac{(-1)^{3} 3!}{(z+3)^{4}}\right| \leq \frac{3!}{4^{4}}$ and we have $\left|R_{2}(x)\right| \leq \frac{3!}{3!4^{4}}=\frac{1}{4^{4}}$
6. (22 points) The ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ can be parametrized by

$$
x(t)=3 \cos (t), \quad y(t)=5 \sin (t) \quad 0 \leq t \leq 2 \pi
$$

Using the given parametric equations for the ellipse,
(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(b) Find an equation of the tangent line to the ellipse at the point $\left(\frac{3}{\sqrt{2}}, \frac{5}{\sqrt{2}}\right)$.
(c) Find the area enclosed by the ellipse.

Solution:

(a) $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{5 \cos (t)}{-3 \sin (t)}=-(5 / 3) \cot (t)$
$\frac{d^{2} y}{d x^{2}}=\frac{d(d y / d x) / d t}{d x / d t}=\frac{\frac{(-5 / 3)[(\sin (t)(-\sin (t))-(\cos (t))(\cos (t))]}{\sin ^{2}(t)}}{-3 \sin (t)}=\frac{-5}{9 \sin ^{3}(t)}$
(b) Observe that $(x(t), y(t))=(3 / \sqrt{2}, 5 / \sqrt{2})$ when $t=\pi / 4$. From part (a) we have $\frac{d y}{d x}(t=\pi / 4)=$ $\frac{-5}{3}$. The equation of the tangent line is found from $y-5 / \sqrt{2}=(-5 / 3)(x-3 / \sqrt{2})$ which simplifies to $y=(-5 / 3) x+5 \sqrt{2}$.
(c) To find the area, find the area in the upper half-plane and multiply by 2 . Note that we integrate from $t=\pi$ to $t=0$ to trace the curve from left to right:

$$
\begin{aligned}
2 \int_{\pi}^{0} y(t)(d x / d t) d t & =2 \int_{\pi}^{0}(5 \sin (t))(-3 \sin (t)) d t \\
& =30 \int_{0}^{\pi} \sin ^{2}(t) d t \\
& =15 \int_{0}^{\pi}(1-\cos (2 t)) d t \\
& =\left.15(t-(1 / 2) \sin (2 t))\right|_{0} ^{\pi}=15 \pi
\end{aligned}
$$

7. (22 points) Consider the curve $r=\sin (3 \theta)$
(a) Plot the curve on the $r \theta$-plane.
(b) Plot the curve on the $x y$-plane.
(c) Set up, but do not evaluate, an integral to find the area outside the circle $r=1 / 2$ and inside the curve $r=\sin 3 \theta$ in the first quadrant of the $x y$-plane.
(d) Set up, but do not evaluate, an integral to find the length of the curve $r=\sin (3 \theta)$ in the first quadrant of the $x y$-plane.

Solution:

(a) The plot of $r=\sin (3 \theta)$ in the $r \theta$-plane is given by:

(b) The plot of $r=\sin (3 \theta)$ in the $x y$-plane is given by:

(c) The intersection points of $r=1 / 2$ and $r=\sin (3 \theta)$ in the first quadrant are given when $\sin (3 \theta)=1 / 2$. In the first quadrant, $\sin t=1 / 2$ when $t=\pi / 6$ and $t=5 \pi / 6$. Thus, we have $3 \theta=\pi / 6$ and $3 \theta=5 \pi / 6$, which gives $\theta=\pi / 18$ and $\theta=5 \pi / 18$. The requested area is then given by the blue shaded area in the first quadrant:

and the integral is:

$$
\frac{1}{2} \int_{\pi / 18}^{5 \pi / 18}\left[\sin ^{2}(3 \theta)-\left(\frac{1}{2}\right)^{2}\right] d \theta
$$

(d) The length of the curve $r=\sin (3 \theta)$ in the first quadrant of the $x y$-plane is given by:

$$
L=\int_{0}^{\pi / 3} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\sqrt{\int_{0}^{\pi / 3} \sqrt{\sin ^{2}(3 \theta)+9 \cos ^{2}(3 \theta)} d \theta}
$$

