APPM 1360 Final Exam Fall 2022

1. (28 points, 7 points each) Decide whether the following quantities are convergent or divergent. Explain your
reasoning and name any test you use.

oo el‘
d
@ [ g

(b) The sequence given by a,, =

(ln n)ZOO

,forn=1,2,...

(c) The sequence given by a; = 2 and a,, = — o

forn=2,3,...
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Solution:

(a) Converges. Two possible solutions:

i. Use a u-substitution with v = e and du = e*dx. Then,
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ii. Comparison test with
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We also observe that T
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11 > 0 so we can use the Direct Comparison Test. Further,
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so the original integral converges.
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(b) Converges. We consider lim (In )

, which is an indeterminant of the form g. We apply L’Hopital’s rule
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200 times to obtain
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Thus, lim a, = lim Q = 0.
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(c) Converges. The sequence given by a; = 2 and a,, = — for n = 2,3,... is defined recursively. We
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need to determine it explicitly. We note that a1 = 2, ap = —3 and a3z = —% =52 In general, we see that
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an = (—1)" 31 and therefore nh_}rrgo an = 0.
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it diverges.

2. (21 points) Consider the curves y = 2z and y = ze” shown below. Let R be the region in the first quadrant
bounded above by y = 2x and below by y = xe”.
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(a) Find the (z,y) coordinates of all points of intersection of y = 2x and y = xe”.
(b) Calculate the area of R.
(c) Setup, but do not evaluate, an integral that gives the volume obtained by rotating R about the y-axis.

(d) Setup, but do not evaluate, an integral that gives the volume obtained by rotating R about y = 2.

Solution:

(a) To find the z-coordinates of the intersection points, set 2x = xe”. This gives 2x — ze” = x(2 — €”). So, the
x-coordinates of the two intersection points are z = 0 and x = In 2. Substitute these = values into either of

the equations to obtain the intersection points of ‘ (0,0) and (In2,21n2) ‘
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(b) The area is given by / (2x — xe®) dx. We need to use integration by parts on the second part of the

0
integrand. We set u = x, du = dz, dv = e*dz and v = €*. Then,
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(c) The requested volume is given using the shell method:
In2
V= 27r/ (2 — ze®) dx
0
(d) The requested volume is found using the washer method:
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. Let the partial sum s, = Z a;.
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3. (21 points) Consider the series a, wherea,, = ——————
(21 points) > an i e Yy 2

n=1
(a) Write the partial fraction decomposition of a,.
(b) Find a simple expression for s,,.
(c) Is {s,,} monotonic? Justify your answer.
(d) Is {s, } bounded? If so, find upper and lower bounds for s,,.

(e) Does the given series converge? If so, what does it converge to?

Solution:
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(b) This is a telescoping series and we have
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(c) The a, terms are all positive so s, is an increasing sequence and therefore monotonic.

(d) sy, is bounded below by a; = 1/3 and bounded above by
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(e) The series converges to the limit of the partial sums, or 1.
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4. (16 Points) Suppose a power series Z cn(x — a)™ has an interval of convergence of (2, 8). Use this information

n=0
to answer the following questions. (No justification is necessary for your answers on this problem.)

(a) Find the center and radius of convergence.
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(b) Is Z cp 4™ absolutely convergent, conditionally convergent, divergent, or do you need more information?
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(c) For what values of b does Z ¢, b" converge?
n=0
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(d) If the Ratio Test is used to find that the interval of convergence is (2, 8), what would li_>m equal?
n—oo

Solution:
(a) The interval (2, 8) corresponds to [z — a| < R where the center = 5 and the radius R = 3.
(b) The value x — 5 = 4 lies outside the radius of convergence so the series diverges.
(c) Since b = x — 5, the series converges when |b| < 3.
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(d) Let L = lim . From the ratio test, we must have L|z — a| < 1. Since a = 5 we have 5 — I <z <
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5 4+ —. Further, since the interval of convergence is (2, 8), we have 5 — = 2 which implies that L = 1/3.
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(This can also be found by setting 5 + 7= 8.)
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5. (20 points) Suppose a function f has f(1) = 1 and the n'! derivative of fis fM(z) = ((—1-3’)):*1 forn =
x

1,2,...,x # =3.
(a) Find the Taylor series of f centered at a = 1.

(b) Find T»(x), the Taylor polynomial of order 2, of function f(z) centered at a = 1.
(c) Use the Taylor Remainder formula to find an estimate for the absolute error if 75(x) is used to approximate

f(2).
Solution:
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(@ f(1)= 1 and fM(1) = (1( - ;):H = ( 421 ™ So that Taylor series of f centered at a = 1 is given by
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maximized at 1, so | f®)(z)] = 13 < 1 and we have | | Ry ()| < EP TR
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6. (22 points) The ellipse 9 + o6 = 1 can be parametrized by

x(t) = 3cos(t), y(t)=>5sin(t) 0<t<27
Using the given parametric equations for the ellipse,

. dy d%y
(a) Find e and FroR

(b) Find an equation of the tangent line to the ellipse at the point (%,

).
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(c) Find the area enclosed by the ellipse.

Solution:

dy dy/dt | 5cos(t)

@) de ~ dx/dt | —3sin(t) = —(5/3)cot(t)
—5/3)|(sin(t)(— sin(t))—(cos(t))(cos(t
@ d(dy/de)/dt (=5/3)[(sin(t)( Sing()t)) (cos(t))(cos(t))] - s
de?  dx/dt —3sin(t) | 9sin®(1)

(b) Observe that (z(t),y(t)) = (3/v2,5/V2) when t = n/4. From part (a) we have Z—i(t = 7/4) =

-5
5 The equation of the tangent line is found from y — 5/v2 = (=5/3)(z — 3/v/2) which simplifies
to ‘ y = (=5/3)x +5V2 ‘




(c) To find the area, find the area in the upper half-plane and multiply by 2. Note that we integrate from ¢ = 7 to
t = 0 to trace the curve from left to right:

0 0
2 / y(t)(dz/dt) dt = 2 / (5sin(t))(—3sin(t)) dt
= 30 / Wsin2(t) dt
0
= 15/0 (1 —cos(2t)) dt
= 15(t — (1/2)sin(2t))[7 =

7. (22 points) Consider the curve r = sin(36)

(a) Plot the curve on the rf-plane.
(b) Plot the curve on the zy-plane.

(c) Set up, but do not evaluate, an integral to find the area outside the circle » = 1/2 and inside the curve
r = sin 36 in the first quadrant of the xy-plane.

(d) Set up, but do not evaluate, an integral to find the length of the curve r = sin(36) in the first quadrant of the
xy-plane.

Solution:

(a) The plot of r = sin(30) in the rf-plane is given by:
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(b) The plot of = sin(36) in the xy-plane is given by:
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(c) The intersection points of » = 1/2 and r = sin(36) in the first quadrant are given when sin(36) = 1/2. In
the first quadrant, sint = 1/2 when ¢t = 7/6 and ¢t = 57 /6. Thus, we have 30 = 7/6 and 30 = 57/6,
which gives ‘ 0 =m/18 and § = 57/18 ‘ The requested area is then given by the blue shaded area in the first
quadrant:




and the integral is:
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(d) The length of the curve = sin(36) in the first quadrant of the xy-plane is given by:
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