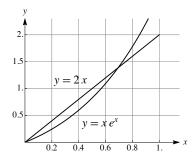
1. (28 points, 7 points each) Decide whether the following quantities are convergent or divergent. Explain your reasoning and name any test you use.

(a)
$$\int_0^\infty \frac{e^x}{e^{2x} + 1} \, dx$$

- (b) The sequence given by $a_n = \frac{(\ln n)^{200}}{n}$, for n = 1, 2, ...
- (c) The sequence given by $a_1 = 2$ and $a_n = -\frac{a_{n-1}}{3}$ for n = 2, 3, ...
- (d) $\frac{\pi}{5} + \frac{\pi}{10} + \frac{\pi}{15} + \cdots$
- 2. (21 points) Consider the curves y = 2x and $y = xe^x$ shown below. Let \mathcal{R} be the region in the first quadrant bounded above by y = 2x and below by $y = xe^x$.



- (a) Find the (x, y) coordinates of all points of intersection of y = 2x and $y = xe^x$.
- (b) Calculate the area of \mathcal{R} .
- (c) Set up, **but do not evaluate**, an integral that gives the volume obtained by rotating \mathcal{R} about the *y*-axis.
- (d) Set up, **but do not evaluate**, an integral that gives the volume obtained by rotating \mathcal{R} about y = 2.

3. (21 points) Consider the series
$$\sum_{n=1}^{\infty} a_n$$
 where $a_n = \frac{2}{(n+1)(n+2)}$. Let the partial sum $s_n = \sum_{i=1}^n a_i$

- (a) Write the partial fraction decomposition of a_n .
- (b) Find a simple expression for s_n .
- (c) Is $\{s_n\}$ monotonic? Justify your answer.
- (d) Is $\{s_n\}$ bounded? If so, find upper and lower bounds for s_n .
- (e) Does the given series converge? If so, what does it converge to?
- 4. (16 Points) Suppose a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ has an interval of convergence of (2,8). Use this information to answer the following questions. (No justification is necessary for your answers on this problem.)
 - (a) Find the center and radius of convergence.
 - (b) Is $\sum_{n=0}^{\infty} c_n 4^n$ absolutely convergent, conditionally convergent, divergent, or do you need more information?

- (c) For what values of b does $\sum_{n=0}^{\infty} c_n b^n$ converge?
- (d) If the Ratio Test is used to find that the interval of convergence is (2,8), what would $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right|$ equal?
- 5. (20 points) Suppose a function f has $f(1) = \frac{1}{4}$ and the n^{th} derivative of f is $f^{(n)}(x) = \frac{(-1)^n n!}{(x+3)^{n+1}}$ for $n = 1, 2, ..., x \neq -3$.
 - (a) Find the Taylor series of f centered at a = 1.
 - (b) Find $T_2(x)$, the Taylor polynomial of order 2, of function f(x) centered at a = 1.
 - (c) Use the Taylor Remainder formula to find an estimate for the absolute error if $T_2(x)$ is used to approximate f(2).

6. (22 points) The ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$ can be parametrized by

$$x(t) = 3\cos(t), \quad y(t) = 5\sin(t) \quad 0 \le t \le 2\pi$$

Using the given parametric equations for the ellipse,

- (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- (b) Find an equation of the tangent line to the ellipse at the point $\left(\frac{3}{\sqrt{2}}, \frac{5}{\sqrt{2}}\right)$.
- (c) Find the area enclosed by the ellipse.
- 7. (22 points) Consider the curve $r = \sin(3\theta)$
 - (a) Plot the curve on the $r\theta$ -plane.
 - (b) Plot the curve on the *xy*-plane.
 - (c) Set up, but do not evaluate, an integral to find the area outside the circle r = 1/2 and inside the curve $r = \sin 3\theta$ in the first quadrant of the xy-plane.
 - (d) Set up, but do not evaluate, an integral to find the length of the curve $r = \sin(3\theta)$ in the first quadrant of the xy-plane.