1. (28 points, 7 points each) Decide whether the following quantities are convergent or divergent. Explain your reasoning and name any test you use.
(a) $\int_{0}^{\infty} \frac{e^{x}}{e^{2 x}+1} d x$
(b) The sequence given by $a_{n}=\frac{(\ln n)^{200}}{n}$, for $n=1,2, \ldots$
(c) The sequence given by $a_{1}=2$ and $a_{n}=-\frac{a_{n-1}}{3}$ for $n=2,3, \ldots$
(d) $\frac{\pi}{5}+\frac{\pi}{10}+\frac{\pi}{15}+\cdots$
2. (21 points) Consider the curves $y=2 x$ and $y=x e^{x}$ shown below. Let \mathcal{R} be the region in the first quadrant bounded above by $y=2 x$ and below by $y=x e^{x}$.

(a) Find the (x, y) coordinates of all points of intersection of $y=2 x$ and $y=x e^{x}$.
(b) Calculate the area of \mathcal{R}.
(c) Set up, but do not evaluate, an integral that gives the volume obtained by rotating \mathcal{R} about the y-axis.
(d) Set up, but do not evaluate, an integral that gives the volume obtained by rotating \mathcal{R} about $y=2$.
3. (21 points) Consider the series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{2}{(n+1)(n+2)}$. Let the partial sum $s_{n}=\sum_{i=1}^{n} a_{i}$.
(a) Write the partial fraction decomposition of a_{n}.
(b) Find a simple expression for s_{n}.
(c) Is $\left\{s_{n}\right\}$ monotonic? Justify your answer.
(d) Is $\left\{s_{n}\right\}$ bounded? If so, find upper and lower bounds for s_{n}.
(e) Does the given series converge? If so, what does it converge to?
4. (16 Points) Suppose a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has an interval of convergence of $(2,8)$. Use this information to answer the following questions. (No justification is necessary for your answers on this problem.)
(a) Find the center and radius of convergence.
(b) Is $\sum_{n=0}^{\infty} c_{n} 4^{n}$ absolutely convergent, conditionally convergent, divergent, or do you need more information?
(c) For what values of b does $\sum_{n=0}^{\infty} c_{n} b^{n}$ converge?
(d) If the Ratio Test is used to find that the interval of convergence is $(2,8)$, what would $\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|$ equal?
5. (20 points) Suppose a function f has $f(1)=\frac{1}{4}$ and the $n^{\text {th }}$ derivative of f is $f^{(n)}(x)=\frac{(-1)^{n} n \text { ! }}{(x+3)^{n+1}}$ for $n=$ $1,2, \ldots, x \neq-3$.
(a) Find the Taylor series of f centered at $a=1$.
(b) Find $T_{2}(x)$, the Taylor polynomial of order 2, of function $f(x)$ centered at $a=1$.
(c) Use the Taylor Remainder formula to find an estimate for the absolute error if $T_{2}(x)$ is used to approximate $f(2)$.
6. (22 points) The ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ can be parametrized by

$$
x(t)=3 \cos (t), \quad y(t)=5 \sin (t) \quad 0 \leq t \leq 2 \pi
$$

Using the given parametric equations for the ellipse,
(a) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
(b) Find an equation of the tangent line to the ellipse at the point $\left(\frac{3}{\sqrt{2}}, \frac{5}{\sqrt{2}}\right)$.
(c) Find the area enclosed by the ellipse.
7. (22 points) Consider the curve $r=\sin (3 \theta)$
(a) Plot the curve on the $r \theta$-plane.
(b) Plot the curve on the $x y$-plane.
(c) Set up, but do not evaluate, an integral to find the area outside the circle $r=1 / 2$ and inside the curve $r=\sin 3 \theta$ in the first quadrant of the $x y$-plane.
(d) Set up, but do not evaluate, an integral to find the length of the curve $r=\sin (3 \theta)$ in the first quadrant of the $x y$-plane.

