- 1. Consider the region \mathcal{R} in the first quadrant bounded above by $y = e^{-2x}$, below by $y = e^{-2}$, and the y-axis. For this problem, set up but <u>do not evaluate</u> the integrals to find the requested quantities.
 - (a) (5 pts) Graph the given equations and shade the region \mathcal{R} . Label the equations and any intersection points.
 - (b) (7 pts) The volume of a solid with \mathcal{R} as the base and cross-sections perpendicular to the x-axis that are squares.
 - (c) (7 pts) The volume generated by rotating \mathcal{R} about the line y = -1 using the <u>shell</u> method.
 - (d) (7 pts) The area of the surface generated by rotating the upper curve about the x-axis.
- 2. Three unrelated questions.
 - (a) (8 points) A mass of 1 kg is located at (0,0), a mass of 2 kg is located at (a,0), and a mass of 3 kg is at (0,5). If the *x*-coordinate of the centroid of this system of masses is $\bar{x} = 1$, find the value of *a*.
 - (b) (8 points) Solve the differential equation $\frac{dy}{dt} = t + y^2 t$ with y(0) = -1. Write your answer in the form y = f(t).
 - (c) (10 points) A 1600 pound elevator is suspended by a 200 foot cable that weighs 10 lb/ft. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft? You don't have to fully simplify your answer.
- 3. (21 points) Determine whether each of the following converge or diverge. If the quantity converges, find the limit. Explain your work and name any test or theorem that you use.
 - (a) The sequence given by $a_n = \frac{n^2}{e^{3n}}$
 - (b) The sequence given by $b_n = n \ln(1 + \pi/n)$

(c) The series given by
$$\sum_{k=1}^{\infty} \frac{1}{k + k \ln k}$$

4. (12 points) Consider the series given by

$$\frac{b}{2} + \frac{3b^2}{4} + \frac{9b^3}{8} + \frac{27b^4}{16} + \cdots$$

where b is a constant.

- (a) Write this series using summation notation.
- (b) For what values of b will the series converge?
- (c) Find the sum of the series when b = 1/9. Simplify your answer.

5. (15 points) Consider the series $\sum_{n=1}^{\infty} a_n = -8$ and let the partial sum $s_n = \sum_{i=1}^{n} a_i$. Which of the following statements are necessarily true? Write the entire word TRUE if the statement is always true. Write the entire word FALSE otherwise. Provide a short (1 or 2 sentences) explanation for each answer.

- (a) The sequence $\{a_n\}$ converges to -8.
- (b) $\lim_{n \to \infty} a_{n+1} = 0.$

(c) $\lim_{n \to \infty} s_n = -8.$ (d) If $s_3 = -7$ and $s_4 = -\frac{15}{2}$, then $a_4 = -\frac{1}{2}.$ (e) $\sum_{n=1}^{\infty} (a_n + \frac{1}{2})$ converges.