1. (22 pts) The shaded region \mathcal{R} , shown at right, is bounded above by $y = x^2$, below by $y = x^2 \ln x$, and on the left by x = 1.

Set up integrals to find the following quantities. Simplify derivatives but otherwise <u>do not evaluate</u> the integrals.

- (a) Volume of the solid generated by rotating \mathcal{R} about the line x = 5.
- (b) Volume of the solid generated by rotating \mathcal{R} about the *x*-axis.
- (c) Area of the surface generated by rotating the lower border of \mathcal{R} about the *x*-axis (i.e., rotating the curve $y = x^2 \ln x$).

Solution:

To find the point where the curves intersect, solve $x^2 \ln x = x^2 \implies \ln x = 1 \implies x = e$.

(a) By the Shell Method: $V = \int_{a}^{b} 2\pi r h \, dx = \boxed{\int_{1}^{e} 2\pi (5-x) \left(x^2 - x^2 \ln x\right) dx}$

(b) By the Washer Method:
$$V = \int_{a}^{b} \pi \left(R^{2} - r^{2} \right) dx = \left[\int_{1}^{e} \pi \left(\left(x^{2} \right)^{2} - \left(x^{2} \ln x \right)^{2} \right) dx \right]$$

(c) The derivative of $y = x^2 \ln x$ is $y' = x + 2x \ln x$. Therefore the surface area is $S = \int_a^b 2\pi r \sqrt{1 + (y')^2} \, dx = \boxed{\int_1^e 2\pi \left(x^2 \ln x\right) \sqrt{1 + (x + 2x \ln x)^2} \, dx}.$

2. (23 pts) Evaluate the integrals. Justify all indeterminate limits.

(a)
$$\int \frac{dx}{(1+x^2)^{3/2}}$$

(b) i. $\int x^2 \ln x \, dx$ ii. $\int_0^1 x^2 \ln x \, dx$

Solution:

(a) Let $x = \tan \theta$, $dx = \sec^2 \theta \, d\theta$.

$$\int \frac{dx}{(1+x^2)^{3/2}} = \int \frac{\sec^2\theta}{(1+\tan^2\theta)^{3/2}} \, d\theta = \int \frac{\sec^2\theta}{(\sec^2\theta)^{3/2}} \, d\theta = \int \frac{\sec^2\theta}{\sec^3\theta} \, d\theta$$
$$= \int \frac{1}{\sec\theta} \, d\theta = \int \cos\theta \, d\theta = \sin\theta + C = \boxed{\frac{x}{\sqrt{1+x^2}} + C}$$
$$\underbrace{\sqrt{1+x^2}}_{\theta}$$

(b) i.

$$\int x^2 \ln x \, dx = \int \underbrace{x^2}_{\substack{v=x^3/3 \\ dv=x^2 \, dx}} \underbrace{\ln x}_{\substack{u=\ln x \\ du=dx/x}} \, dx \stackrel{IBP}{=} \frac{x^3}{3} \ln x - \int \frac{x^2}{3} \, dx$$
$$= \boxed{\frac{x^3}{3} \ln x - \frac{x^3}{9} + C}$$

ii.

$$\int_0^1 x^2 \ln x \, dx = \lim_{t \to 0^+} \int_t^1 x^2 \ln x \, dx$$
$$= \lim_{t \to 0^+} \left[\frac{x^3}{3} \ln x - \frac{x^3}{9} \right]_t^1$$
$$= \lim_{t \to 0^+} \left(0 - \frac{1}{9} - \left(\frac{t^3}{3} \ln t - \frac{t^3}{9} \right) \right) = \boxed{-\frac{1}{9}}$$
because $\lim_{t \to 0^+} t^3 \ln t = \lim_{t \to 0^+} \frac{\ln t}{t^{-3}} \stackrel{LH}{=} \lim_{t \to 0^+} \frac{t^{-1}}{-3t^{-4}} = \lim_{t \to 0^+} -\frac{t^3}{3} = 0.$

3. (22 pts) Find the value the sequence or series converges to. If it does not converge, explain why not.

(a)
$$\left\{\frac{\sqrt{4n}}{1+\sqrt{n}}\right\}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{3n+2}$ (c) $\sum_{n=1}^{\infty} \frac{\pi^5 2^n}{5^n}$

Solution:

(a)
$$\lim_{n \to \infty} \frac{\sqrt{4n}}{1 + \sqrt{n}} = \lim_{n \to \infty} \frac{2\sqrt{n}}{1 + \sqrt{n}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{2}{\frac{1}{\sqrt{n}} + 1} = \boxed{2}$$

Alternate Solution:
$$\lim_{n \to \infty} \frac{\sqrt{4n}}{1 + \sqrt{n}} \stackrel{LH}{=} \lim_{n \to \infty} \frac{\frac{4}{2\sqrt{4n}}}{\frac{1}{2\sqrt{n}}} = \boxed{2}$$

(b) Apply the Limit Comparison Test and compare to the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{3n+2}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{3n+2} \stackrel{LH}{=} \frac{1}{3} > 0$$

The given series also diverges.

(c) $\sum_{n=1}^{\infty} \frac{\pi^5 2^n}{5^n}$ is a geometric series with first term $a = \frac{2}{5}\pi^5$ and ratio $r = \frac{2}{5} < 1$.

Therefore the series converges to

$$S = \frac{a}{1-r} = \frac{\frac{2}{5}\pi^5}{1-\frac{2}{5}} = \boxed{\frac{2}{3}\pi^5}.$$

- 4. (15 pts) Let $f(x) = x \ln x x + 1$.
 - (a) Use the formula for Taylor Series to find the polynomial $T_2(x)$ for f(x) centered at a = 1.
 - (b) Suppose $T_2(x)$ is used to approximate $f\left(\frac{3}{2}\right)$. By the Alternating Series Estimation Theorem, what is an error bound for the approximation? (Note: The series corresponding to $f\left(\frac{3}{2}\right)$ is alternating and satisfies the conditions of the theorem.)

Solution:

(a) The Taylor Series for a function f(x) centered at 1 is $\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (x-1)^n$.

The first two derivatives of $f(x) = x \ln x - x + 1$ are

$$f'(x) = \cancel{1} + \ln x - \cancel{1} \qquad f'(1) = 0$$

$$f''(x) = \frac{1}{x} \qquad f''(1) = 1.$$

It follows that

$$T_2(x) = f(1) + \frac{f'(1)}{1!}(x-1) + \frac{f''(1)}{2!}(x-1)^2$$
$$= 0 + 0 + \frac{1}{2!}(x-1)^2 = \boxed{\frac{1}{2}(x-1)^2}.$$

(b) The series centered at 1 corresponding to f(3/2) is $\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} \left(\frac{1}{2}\right)^n$.

The approximation $T_2(3/2)$ equals the sum of the first 3 terms of the series. By the Alternating Series Estimation Theorem, an error bound is the magnitude of the next term:

$$\left|\frac{f^3(1)}{3!}\left(\frac{1}{2}\right)^3\right|$$

The third derivative of f is $f''' = -1/x^2$ and f'''(1) = -1, so an error bound is

$$\left| \frac{f^3(1)}{3!} \left(\frac{1}{2} \right)^3 \right| = \left| \frac{-1}{3!} \left(\frac{1}{2} \right)^3 \right| = \boxed{\frac{1}{48}}.$$

- 5. (20 pts) Let $g(x) = \arctan(x^2)$.
 - (a) Find a Maclaurin series for g(x).
 - (b) Use your answer for part (a) to find a Maclaurin series for $x^3g'(x)$. Simplify your answer.
 - (c) What is the sum of the series found in part (b)?

Solution:

(a) The Maclaurin series for
$$\arctan x$$
 is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$.
The Maclaurin series for $g(x) = \arctan(x^2)$ is $\boxed{\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1}}$.

(b)
$$x^{3}g'(x) = x^{3}\frac{d}{dx}\left(\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{4n+2}}{2n+1}\right) = x^{3}\sum_{n=0}^{\infty}(-1)^{n}\frac{(4n+2)x^{4n+1}}{2n+1} = \boxed{\sum_{n=0}^{\infty}(-1)^{n}2x^{4n+4}}$$

(c) The sum of the series is $x^3g'(x) = x^3\frac{d}{dx}\left(\arctan\left(x^2\right)\right) = x^3\cdot\frac{2x}{1+x^4} = \boxed{\frac{2x^4}{1+x^4}}$

Alternate solution:

The series $\sum_{n=0}^{\infty} (-1)^n 2x^{4n+4} = \sum_{n=0}^{\infty} \underbrace{2x^4}_{a} \underbrace{(-x^4)^n}_{r^n}$ is geometric with first term $a = 2x^4$ and ratio $r = -x^4$. The sum of the series is therefore $S = \frac{a}{1-r} = \frac{2x^4}{1+x^4}$.

- 6. (14 pts) Consider the parametric curve $x = e^{t/2}, y = 1 + e^{2t}$.
 - (a) Find an equation of the line with slope 4 that is tangent to the curve.
 - (b) Eliminate the parameter to find a Cartesian equation of the curve. Simplify your answer.

Solution:

(a) The slope of the curve is

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2e^{2t}}{\frac{1}{2}e^{t/2}} = 4e^{3t/2}$$

Solving dy/dx = 4 gives

$$\frac{dy}{dx} = 4e^{3t/2} = 4 \implies e^{3t/2} = 1 \implies t = 0.$$

At t = 0, the slope equals 4 and the coordinates are x = 1, y = 2. Therefore an equation of the line is y = 2 + 4(x - 1) or y = 4x - 2.

(b) Squaring the equation $x = e^{t/2}$ gives $x^2 = e^t$. Substituting into the equation for y yields

$$y = 1 + e^{2t} = 1 + (e^t)^2 = 1 + (x^2)$$

 $y = 1 + x^4$.

- 7. (14 pts) Consider the curve $x^2 = 16(1 + y^2)$.
 - (a) Find the vertices and asymptotes of the curve.
 - (b) Find a polar representation $r = f(\theta)$ for the curve.

Solution:

(a) The curve is a hyperbola with equation

$$x^2 - 16y^2 = 16$$
 or $\frac{x^2}{16} - y^2 = 1$

which corresponds to the general equation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

with a = 4 and b = 1. The vertices are located at $(\pm 4, 0)$. The asymptotes are $y = \pm \frac{b}{a}x$ or $y = \pm \frac{1}{4}x$. (b) Apply the identities $x = r \cos \theta$ and $y = r \sin \theta$.

$$x^{2} = 16 + 16y^{2}$$

$$r^{2}\cos^{2}\theta = 16 + 16r^{2}\sin^{2}\theta$$

$$r^{2}\cos^{2}\theta - 16r^{2}\sin^{2}\theta = 16$$

$$r^{2} = \frac{16}{\cos^{2}\theta - 16\sin^{2}\theta}$$

$$r = \boxed{\pm\sqrt{\frac{16}{\cos^{2}\theta - 16\sin^{2}\theta}}}$$

- 8. (20 pts) Consider the polar curves $r = 2 + \sin(2\theta)$ and $r = 2 + \cos(2\theta)$ in the 1st and 2nd quadrants, shown at right.
 - (a) Find the (x, y) coordinates for the point that corresponds to $r = 2 + \sin(2\theta), \theta = \frac{\pi}{6}$. Simplify your answer.
 - (b) Set up (but do not evaluate) integrals to find the following quantities.
 - i. Length of the curve $r = 2 + \sin(2\theta)$.
 - ii. Area of the region inside $r = 2 + \sin(2\theta)$ and outside $r = 2 + \cos(2\theta)$. (*Hint:* For the bounds, consider $\tan(2\theta)$.)

Solution:

(a)
$$x = r \cos \theta = (2 + \sin(\pi/3)) \cos(\pi/6) = \left(2 + \frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) = \sqrt{3} + \frac{3}{4}$$

 $y = r \sin \theta = (2 + \sin(\pi/3)) \sin(\pi/6) = \left(2 + \frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right) = 1 + \frac{\sqrt{3}}{4}$
(b) i. $L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} = \int_{0}^{\pi} \sqrt{(2 + \sin(2\theta))^2 + (2\cos(2\theta))^2} \, d\theta$
ii. First find the intersection points

11. First find the intersection points.

$$2 + \sin(2\theta) = 2 + \cos(2\theta)$$
$$\sin(2\theta) = \cos(2\theta)$$
$$\tan(2\theta) = 1$$
$$2\theta = \frac{\pi}{4}, \frac{5\pi}{4}$$
$$\theta = \frac{\pi}{8}, \frac{5\pi}{8}$$

The area between the curves is

$$A = \int_{\alpha}^{\beta} \frac{1}{2} \left(r_1^2 - r_2^2 \right) d\theta = \int_{\pi/8}^{5\pi/8} \frac{1}{2} \left(\left(2 + \sin(2\theta) \right)^2 - \left(2 + \cos(2\theta) \right)^2 \right) d\theta$$

