1. (22 pts) The shaded region \mathcal{R}, shown at right, is bounded above by $y=x^{2}$, below by $y=x^{2} \ln x$, and on the left by $x=1$.

Set up integrals to find the following quantities. Simplify derivatives but otherwise do not evaluate the integrals.
(a) Volume of the solid generated by rotating \mathcal{R} about the line $x=5$.
(b) Volume of the solid generated by rotating \mathcal{R} about the
 x-axis.
(c) Area of the surface generated by rotating the lower border of \mathcal{R} about the x-axis (i.e., rotating the curve $y=x^{2} \ln x$).

Solution:

To find the point where the curves intersect, solve $x^{2} \ln x=x^{2} \Longrightarrow \ln x=1 \Longrightarrow x=e$.
(a) By the Shell Method: $V=\int_{a}^{b} 2 \pi r h d x=\int_{1}^{e} 2 \pi(5-x)\left(x^{2}-x^{2} \ln x\right) d x$
(b) By the Washer Method: $V=\int_{a}^{b} \pi\left(R^{2}-r^{2}\right) d x=\int_{1}^{e} \pi\left(\left(x^{2}\right)^{2}-\left(x^{2} \ln x\right)^{2}\right) d x$
(c) The derivative of $y=x^{2} \ln x$ is $y^{\prime}=x+2 x \ln x$. Therefore the surface area is

$$
S=\int_{a}^{b} 2 \pi r \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{1}^{e} 2 \pi\left(x^{2} \ln x\right) \sqrt{1+(x+2 x \ln x)^{2}} d x
$$

2. (23 pts) Evaluate the integrals. Justify all indeterminate limits.
(a) $\int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}$
(b) i. $\int x^{2} \ln x d x$
ii. $\int_{0}^{1} x^{2} \ln x d x$

Solution:

(a) Let $x=\tan \theta, d x=\sec ^{2} \theta d \theta$.

$$
\begin{aligned}
\int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}} & =\int \frac{\sec ^{2} \theta}{\left(1+\tan ^{2} \theta\right)^{3 / 2}} d \theta=\int \frac{\sec ^{2} \theta}{\left(\sec ^{2} \theta\right)^{3 / 2}} d \theta=\int \frac{\sec ^{2} \theta}{\sec ^{3} \theta} d \theta \\
& =\int \frac{1}{\sec \theta} d \theta=\int \cos \theta d \theta=\sin \theta+C=\frac{x}{\sqrt{1+x^{2}}}+C
\end{aligned}
$$

(b) i.

$$
\begin{aligned}
\int x^{2} \ln x d x & =\int \underbrace{}_{\begin{array}{c}
v=x^{3} / 3 \\
d v=x^{2} d x \\
x^{2} \\
\underbrace{u=\ln x} x \\
\ln x
\end{array} d x / x} \stackrel{I B P}{=} \frac{x^{3}}{3} \ln x-\int \frac{x^{2}}{3} d x \\
& =\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}+C
\end{aligned}
$$

ii.

$$
\begin{aligned}
\int_{0}^{1} x^{2} \ln x d x & =\lim _{t \rightarrow 0^{+}} \int_{t}^{1} x^{2} \ln x d x \\
& =\lim _{t \rightarrow 0^{+}}\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{t}^{1} \\
& =\lim _{t \rightarrow 0^{+}}\left(0-\frac{1}{9}-\left(\frac{t^{3}}{3} \ln t-\frac{t^{3}}{9}\right)\right)=-\frac{1}{9}
\end{aligned}
$$

because $\lim _{t \rightarrow 0^{+}} t^{3} \ln t=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{t^{-3}} \stackrel{L H}{=} \lim _{t \rightarrow 0^{+}} \frac{t^{-1}}{-3 t^{-4}}=\lim _{t \rightarrow 0^{+}}-\frac{t^{3}}{3}=0$.
3. (22 pts) Find the value the sequence or series converges to. If it does not converge, explain why not.
(a) $\left\{\frac{\sqrt{4 n}}{1+\sqrt{n}}\right\}$
(b) $\sum_{n=1}^{\infty} \frac{1}{3 n+2}$
(c) $\sum_{n=1}^{\infty} \frac{\pi^{5} 2^{n}}{5^{n}}$

Solution:

(a) $\lim _{n \rightarrow \infty} \frac{\sqrt{4 n}}{1+\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{1+\sqrt{n}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{2}{\frac{1}{\sqrt{n}}+1}=2$

Alternate Solution: $\lim _{n \rightarrow \infty} \frac{\sqrt{4 n}}{1+\sqrt{n}} \stackrel{L H}{=} \lim _{n \rightarrow \infty} \frac{\frac{4}{2 \sqrt{4 n}}}{\frac{1}{2 \sqrt{n}}}=2$
(b) Apply the Limit Comparison Test and compare to the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{3 n+2}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{3 n+2} \stackrel{L H}{=} \frac{1}{3}>0
$$

The given series also diverges.
(c) $\sum_{n=1}^{\infty} \frac{\pi^{5} 2^{n}}{5^{n}}$ is a geometric series with first term $a=\frac{2}{5} \pi^{5}$ and ratio $r=\frac{2}{5}<1$.

Therefore the series converges to

$$
S=\frac{a}{1-r}=\frac{\frac{2}{5} \pi^{5}}{1-\frac{2}{5}}=\frac{2}{3} \pi^{5} .
$$

4. (15 pts) Let $f(x)=x \ln x-x+1$.
(a) Use the formula for Taylor Series to find the polynomial $T_{2}(x)$ for $f(x)$ centered at $a=1$.
(b) Suppose $T_{2}(x)$ is used to approximate $f\left(\frac{3}{2}\right)$. By the Alternating Series Estimation Theorem, what is an error bound for the approximation? (Note: The series corresponding to $f\left(\frac{3}{2}\right)$ is alternating and satisfies the conditions of the theorem.)

Solution:

(a) The Taylor Series for a function $f(x)$ centered at 1 is $\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}(x-1)^{n}$.

The first two derivatives of $f(x)=x \ln x-x+1$ are

$$
\begin{aligned}
f^{\prime}(x) & =1+\ln x-1 & f^{\prime}(1) & =0 \\
f^{\prime \prime}(x) & =\frac{1}{x} & f^{\prime \prime}(1) & =1 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
T_{2}(x) & =f(1)+\frac{f^{\prime}(1)}{1!}(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2} \\
& =0+0+\frac{1}{2!}(x-1)^{2}=\frac{1}{2}(x-1)^{2} .
\end{aligned}
$$

(b) The series centered at 1 corresponding to $f(3 / 2)$ is $\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}\left(\frac{1}{2}\right)^{n}$.

The approximation $T_{2}(3 / 2)$ equals the sum of the first 3 terms of the series. By the Alternating Series Estimation Theorem, an error bound is the magnitude of the next term:

$$
\left|\frac{f^{3}(1)}{3!}\left(\frac{1}{2}\right)^{3}\right| .
$$

The third derivative of f is $f^{\prime \prime \prime}=-1 / x^{2}$ and $f^{\prime \prime \prime}(1)=-1$, so an error bound is

$$
\left|\frac{f^{3}(1)}{3!}\left(\frac{1}{2}\right)^{3}\right|=\left|\frac{-1}{3!}\left(\frac{1}{2}\right)^{3}\right|=\frac{1}{48} .
$$

5. (20 pts) Let $g(x)=\arctan \left(x^{2}\right)$.
(a) Find a Maclaurin series for $g(x)$.
(b) Use your answer for part (a) to find a Maclaurin series for $x^{3} g^{\prime}(x)$. Simplify your answer.
(c) What is the sum of the series found in part (b)?

Solution:

(a) The Maclaurin series for $\arctan x$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$.

The Maclaurin series for $g(x)=\arctan \left(x^{2}\right)$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1}$.
(b) $x^{3} g^{\prime}(x)=x^{3} \frac{d}{d x}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1}\right)=x^{3} \sum_{n=0}^{\infty}(-1)^{n} \frac{(4 n+2) x^{4 n+1}}{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} 2 x^{4 n+4}$.
(c) The sum of the series is $x^{3} g^{\prime}(x)=x^{3} \frac{d}{d x}\left(\arctan \left(x^{2}\right)\right)=x^{3} \cdot \frac{2 x}{1+x^{4}}=\frac{2 x^{4}}{1+x^{4}}$.

Alternate solution:

The series $\sum_{n=0}^{\infty}(-1)^{n} 2 x^{4 n+4}=\sum_{n=0}^{\infty} \underbrace{2 x^{4}}_{a} \underbrace{\left(-x^{4}\right)^{n}}_{r^{n}}$ is geometric with first term $a=2 x^{4}$ and ratio $r=-x^{4}$. The sum of the series is therefore $S=\frac{a}{1-r}=\frac{2 x^{4}}{1+x^{4}}$.
6. (14 pts) Consider the parametric curve $x=e^{t / 2}, y=1+e^{2 t}$.
(a) Find an equation of the line with slope 4 that is tangent to the curve.
(b) Eliminate the parameter to find a Cartesian equation of the curve. Simplify your answer.

Solution:

(a) The slope of the curve is

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 e^{2 t}}{\frac{1}{2} e^{t / 2}}=4 e^{3 t / 2} .
$$

Solving $d y / d x=4$ gives

$$
\frac{d y}{d x}=4 e^{3 t / 2}=4 \Longrightarrow e^{3 t / 2}=1 \Longrightarrow t=0
$$

At $t=0$, the slope equals 4 and the coordinates are $x=1, y=2$. Therefore an equation of the line is $y=2+4(x-1)$ or $y=4 x-2$.
(b) Squaring the equation $x=e^{t / 2}$ gives $x^{2}=e^{t}$. Substituting into the equation for y yields

$$
\begin{gathered}
y=1+e^{2 t}=1+\left(e^{t}\right)^{2}=1+\left(x^{2}\right)^{2} \\
y=1+x^{4} .
\end{gathered}
$$

7. (14 pts) Consider the curve $x^{2}=16\left(1+y^{2}\right)$.
(a) Find the vertices and asymptotes of the curve.
(b) Find a polar representation $r=f(\theta)$ for the curve.

Solution:

(a) The curve is a hyperbola with equation

$$
x^{2}-16 y^{2}=16 \quad \text { or } \quad \frac{x^{2}}{16}-y^{2}=1
$$

which corresponds to the general equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

with $a=4$ and $b=1$. The vertices are located at $(\pm 4,0)$.
The asymptotes are $y= \pm \frac{b}{a} x$ or $y= \pm \frac{1}{4} x$.
(b) Apply the identities $x=r \cos \theta$ and $y=r \sin \theta$.

$$
\begin{aligned}
x^{2} & =16+16 y^{2} \\
r^{2} \cos ^{2} \theta & =16+16 r^{2} \sin ^{2} \theta \\
r^{2} \cos ^{2} \theta & =16 r^{2} \sin ^{2} \theta=16 \\
r^{2} & =\frac{16}{\cos ^{2} \theta-16 \sin ^{2} \theta} \\
r & = \pm \sqrt{\frac{16}{\cos ^{2} \theta-16 \sin ^{2} \theta}}
\end{aligned}
$$

8. (20 pts) Consider the polar curves $r=2+\sin (2 \theta)$ and $r=2+\cos (2 \theta)$ in the 1 st and 2 nd quadrants, shown at right.
(a) Find the (x, y) coordinates for the point that corresponds to $r=2+\sin (2 \theta), \theta=\frac{\pi}{6}$. Simplify your answer.
(b) Set up (but do not evaluate) integrals to find the following quantities.
i. Length of the curve $r=2+\sin (2 \theta)$.
ii. Area of the region inside $r=2+\sin (2 \theta)$ and outside $r=2+\cos (2 \theta)$. (Hint: For the bounds, consider $\tan (2 \theta)$.

Solution:

(a) $x=r \cos \theta=(2+\sin (\pi / 3)) \cos (\pi / 6)=\left(2+\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3}+\frac{3}{4}$
$y=r \sin \theta=(2+\sin (\pi / 3)) \sin (\pi / 6)=\left(2+\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)=1+\frac{\sqrt{3}}{4}$
(b)
i. $L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}=\int_{0}^{\pi} \sqrt{(2+\sin (2 \theta))^{2}+(2 \cos (2 \theta))^{2}} d \theta$
ii. First find the intersection points.

$$
\begin{aligned}
2+\sin (2 \theta) & =2+\cos (2 \theta) \\
\sin (2 \theta) & =\cos (2 \theta) \\
\tan (2 \theta) & =1 \\
2 \theta & =\frac{\pi}{4}, \frac{5 \pi}{4} \\
\theta & =\frac{\pi}{8}, \frac{5 \pi}{8}
\end{aligned}
$$

The area between the curves is

$$
A=\int_{\alpha}^{\beta} \frac{1}{2}\left(r_{1}^{2}-r_{2}^{2}\right) d \theta=\int_{\pi / 8}^{5 \pi / 8} \frac{1}{2}\left((2+\sin (2 \theta))^{2}-(2+\cos (2 \theta))^{2}\right) d \theta
$$

