On the front of your bluebook, please write your name, lecture number, and instructor name. This exam is worth 150 points and has 8 questions on both sides of this paper.

- Make sure all of your work is in your bluebook. Nothing on this exam sheet will be graded. Please begin each problem on a new page.
- Show all work and simplify your answers. Name any theorem you use. Answers with no justification will receive no points unless the problem explicitly states otherwise.
- Notes, papers, calculators, cell phones, and other electronic devices are <u>not permitted</u> except at the end of the test for **scanning and uploading your work to Gradescope**.
- 1. (22 pts) The shaded region \mathcal{R} , shown at right, is bounded above by $y = x^2$, below by $y = x^2 \ln x$, and on the left by x = 1.

Set up integrals to find the following quantities. Simplify derivatives but otherwise <u>do not evaluate</u> the integrals.

- (a) Volume of the solid generated by rotating \mathcal{R} about the line x = 5.
- (b) Volume of the solid generated by rotating \mathcal{R} about the *x*-axis.
- (c) Area of the surface generated by rotating the lower border of \mathcal{R} about the *x*-axis (i.e., rotating the curve $y = x^2 \ln x$).
- 2. (23 pts) Evaluate the integrals. Justify all indeterminate limits.

(a)
$$\int \frac{dx}{(1+x^2)^{3/2}}$$

(b) i. $\int x^2 \ln x \, dx$ ii. $\int_0^1 x^2 \ln x \, dx$

3. (22 pts) Find the value the sequence or series converges to. If it does not converge, explain why not.

(a)
$$\left\{\frac{\sqrt{4n}}{1+\sqrt{n}}\right\}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{3n+2}$ (c) $\sum_{n=1}^{\infty} \frac{\pi^5 2^n}{5^n}$

- 4. (15 pts) Let $f(x) = x \ln x x + 1$.
 - (a) Use the formula for Taylor Series to find the polynomial $T_2(x)$ for f(x) centered at a = 1.
 - (b) Suppose $T_2(x)$ is used to approximate $f\left(\frac{3}{2}\right)$. By the Alternating Series Estimation Theorem, what is an error bound for the approximation? (Note: The series corresponding to $f\left(\frac{3}{2}\right)$ is alternating and satisfies the conditions of the theorem.)

MORE PROBLEMS ON THE NEXT PAGE

- 5. (20 pts) Let $g(x) = \arctan(x^2)$.
 - (a) Find a Maclaurin series for g(x).
 - (b) Use your answer for part (a) to find a Maclaurin series for $x^3g'(x)$. Simplify your answer.
 - (c) What is the sum of the series found in part (b)?
- 6. (14 pts) Consider the parametric curve $x = e^{t/2}$, $y = 1 + e^{2t}$.
 - (a) Find an equation of the line with slope 4 that is tangent to the curve.
 - (b) Eliminate the parameter to find a Cartesian equation of the curve. Simplify your answer.
- 7. (14 pts) Consider the curve $x^2 = 16(1 + y^2)$.
 - (a) Find the vertices and asymptotes of the curve.
 - (b) Find a polar representation $r = f(\theta)$ for the curve.
- 8. (20 pts) Consider the polar curves $r = 2 + \sin(2\theta)$ and $r = 2 + \cos(2\theta)$ in the 1st and 2nd quadrants, shown at right.
 - (a) Find the (x, y) coordinates for the point that corresponds to $r = 2 + \sin(2\theta), \theta = \frac{\pi}{6}$. Simplify your answer.
 - (b) Set up (but <u>do not evaluate</u>) integrals to find the following quantities.
 - i. Length of the curve $r = 2 + \sin(2\theta)$.
 - ii. Area of the region inside $r = 2 + \sin(2\theta)$ and outside $r = 2 + \cos(2\theta)$. (*Hint:* For the bounds, consider $\tan(2\theta)$.)

