On the front of your bluebook, please write your name, lecture number, and instructor name. This exam is worth 150 points and has 8 questions on both sides of this paper.

- Make sure all of your work is in your bluebook. Nothing on this exam sheet will be graded. Please begin each problem on a new page.
- Show all work and simplify your answers. Name any theorem you use. Answers with no justification will receive no points unless the problem explicitly states otherwise.
- Notes, papers, calculators, cell phones, and other electronic devices are not permitted except at the end of the test for scanning and uploading your work to Gradescope.

1. (22 pts) The shaded region \mathcal{R}, shown at right, is bounded above by $y=x^{2}$, below by $y=x^{2} \ln x$, and on the left by $x=1$.

Set up integrals to find the following quantities. Simplify derivatives but otherwise do not evaluate the integrals.
(a) Volume of the solid generated by rotating \mathcal{R} about the line $x=5$.
(b) Volume of the solid generated by rotating \mathcal{R} about the
 x-axis.
(c) Area of the surface generated by rotating the lower border of \mathcal{R} about the x-axis (i.e., rotating the curve $y=x^{2} \ln x$).
2. (23 pts) Evaluate the integrals. Justify all indeterminate limits.
(a) $\int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}$
(b) i. $\int x^{2} \ln x d x \quad$ ii. $\int_{0}^{1} x^{2} \ln x d x$
3. (22 pts) Find the value the sequence or series converges to. If it does not converge, explain why not.
(a) $\left\{\frac{\sqrt{4 n}}{1+\sqrt{n}}\right\}$
(b) $\sum_{n=1}^{\infty} \frac{1}{3 n+2}$
(c) $\sum_{n=1}^{\infty} \frac{\pi^{5} 2^{n}}{5^{n}}$
4. (15 pts) Let $f(x)=x \ln x-x+1$.
(a) Use the formula for Taylor Series to find the polynomial $T_{2}(x)$ for $f(x)$ centered at $a=1$.
(b) Suppose $T_{2}(x)$ is used to approximate $f\left(\frac{3}{2}\right)$. By the Alternating Series Estimation Theorem, what is an error bound for the approximation? (Note: The series corresponding to $f\left(\frac{3}{2}\right)$ is alternating and satisfies the conditions of the theorem.)

> MORE PROBLEMS ON THE NEXT PAGE
5. $(20$ pts $)$ Let $g(x)=\arctan \left(x^{2}\right)$.
(a) Find a Maclaurin series for $g(x)$.
(b) Use your answer for part (a) to find a Maclaurin series for $x^{3} g^{\prime}(x)$. Simplify your answer.
(c) What is the sum of the series found in part (b)?
6. (14 pts) Consider the parametric curve $x=e^{t / 2}, y=1+e^{2 t}$.
(a) Find an equation of the line with slope 4 that is tangent to the curve.
(b) Eliminate the parameter to find a Cartesian equation of the curve. Simplify your answer.
7. (14 pts) Consider the curve $x^{2}=16\left(1+y^{2}\right)$.
(a) Find the vertices and asymptotes of the curve.
(b) Find a polar representation $r=f(\theta)$ for the curve.
8. (20 pts) Consider the polar curves $r=2+\sin (2 \theta)$ and $r=2+\cos (2 \theta)$ in the 1 st and 2 nd quadrants, shown at right.
(a) Find the (x, y) coordinates for the point that corresponds to $r=2+\sin (2 \theta), \theta=\frac{\pi}{6}$. Simplify your answer.
(b) Set up (but do not evaluate) integrals to find the following
 quantities.
i. Length of the curve $r=2+\sin (2 \theta)$.
ii. Area of the region inside $r=2+\sin (2 \theta)$ and outside $r=2+\cos (2 \theta)$. (Hint: For the bounds, consider $\tan (2 \theta)$.

