1. (30 pts) Determine whether the series is convergent or divergent. Be sure to fully justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{9 n+4}}$
(b) $\sum_{n=1}^{\infty} \frac{5^{n}}{(n-1)!}$
(c) $\sum_{n=1}^{\infty} \frac{\ln (1+n)}{\ln \left(9+n^{2}\right)}$

Solution:

(a) Use the Limit Comparison Test and compare to the divergent p-series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(p=\frac{1}{2}<1\right)$.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{9 n+4}}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n}{9 n+4}} \stackrel{L H}{=} \sqrt{\frac{1}{9}}>0
$$

The series is divergent.
(b) Apply the Ratio Test.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{5^{n+1}}{n!} \cdot \frac{(n-1)!}{5^{n}}\right|=\lim _{n \rightarrow \infty} \frac{5}{n}=0<1
$$

The series is convergent.
(c) By the Test for Divergence,

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\ln (1+n)}{\ln \left(9+n^{2}\right)} \stackrel{L H}{=} \lim _{n \rightarrow \infty} \frac{\frac{1}{1+n}}{\frac{2 n}{9+n^{2}}}=\lim _{n \rightarrow \infty} \frac{9+n^{2}}{2 n+2 n^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{9}{n^{2}}+1}{\frac{2}{n}+2}=\frac{1}{2} \neq 0
$$

and therefore the series is divergent.
2. (13 pts) The power series $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}} \frac{(x-10)^{n}}{2^{2 n}}$ has a radius of convergence $R=4$. For what values of x (if any) is the series conditionally convergent? absolutely convergent?

Solution:

The center of the power series is $a=10$. Because the radius of convergence is $R=4$, the interval of convergence includes the values $6<x<14$ and possibly the endpoints.
At the endpoint $x=14$, the series $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}} \frac{(14-10)^{n}}{2^{2 n}}=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ is an absolutely convergent p -series $\left(p=\frac{3}{2}>1\right)$.
At the endpoint $x=6$, the series $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}} \frac{(6-10)^{n}}{2^{2 n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 2}}$ is absolutely convergent, as shown above.

Therefore the power series is not conditionally convergent for any x. It is absolutely convergent for $6 \leq x \leq 14$.
3. (14 pts)
(a) Find a power series representation for $\frac{x}{1+x^{3}}$ centered at $a=0$. Simplify your answer.
(b) Use the power series to evaluate $\int_{0}^{0.9} \frac{x}{1+x^{3}} d x$. Express your answer in the form of a series.

Solution:

(a) Use the formula $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$.

The function $\frac{x}{1+x^{3}}=x \cdot \frac{1}{1+x^{3}}=x \sum_{n=0}^{\infty}\left(-x^{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{3 n+1}$.
(b)

$$
\begin{aligned}
\int_{0}^{0.9} \frac{x}{1+x^{3}} d x & =\int_{0}^{0.9}\left(\sum_{n=0}^{\infty}(-1)^{n} x^{3 n+1}\right) d x \\
& =\left[\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n+2}}{3 n+2}\right]_{0}^{0.9}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(0.9)^{3 n+2}}{3 n+2}
\end{aligned}
$$

4. (23 pts) Consider the function $f(x)=(2 x+1)^{3 / 2}$.
(a) Find the Taylor polynomial $T_{1}(x)$ for $f(x)$ centered at $a=0$.
(b) Use $T_{1}(x)$ to approximate the value of $f\left(\frac{1}{5}\right)$.
(c) Use Taylor's Formula to find an error bound for the approximation found in part (b).

Solution:

(a) Note that $f(0)=1, f^{\prime}(x)=3(2 x+1)^{1 / 2}$, and $f^{\prime}(0)=3$.

Using the Taylor Series formula, $T_{1}(x)=f(0)+f^{\prime}(0) x=1+3 x$.

Alternate Solution:

By the binomial series formula, $T_{1}(x)=\binom{3 / 2}{0}+\binom{3 / 2}{1}(2 x)=1+3 x$.
(b) $f\left(\frac{1}{5}\right) \approx T_{1}\left(\frac{1}{5}\right)=1+3 \cdot \frac{1}{5}=\frac{8}{5}$
(c)

$$
\begin{aligned}
R_{1}(x) & =\frac{f^{\prime \prime}(z)}{2!} x^{2} \quad \text { for } 0<z<\frac{1}{5} \\
R_{1}\left(\frac{1}{5}\right) & =\frac{f^{\prime \prime}(z)}{2}\left(\frac{1}{5}\right)^{2} \\
\left|f^{\prime \prime}(z)\right| & =\left|\frac{3}{(2 z+1)^{1 / 2}}\right|<\frac{3}{(2 \cdot 0+1)^{1 / 2}}=3 \quad(\text { let } z=0) \\
\left|R_{1}\left(\frac{1}{5}\right)\right| & <\frac{3}{2}\left(\frac{1}{5}\right)^{2}=\frac{3}{50}
\end{aligned}
$$

5. (8 pts) Find the function $g(x)$ which has the power series representation

$$
\sum_{n=1}^{\infty}(-1)^{n}\binom{1 / 3}{n} 9^{n} x^{n+1} \quad \text { for }|x|<\frac{1}{9}
$$

Solution:

Using the binomial series formula $(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}$, we find that $(1-9 x)^{1 / 3}=\sum_{n=0}^{\infty}\binom{1 / 3}{n}(-9 x)^{n}$.
Therefore $g(x)$ equals $\sum_{n=1}^{\infty}(-1)^{n}\binom{1 / 3}{n} 9^{n} x^{n+1}=x \sum_{n=1}^{\infty}\binom{1 / 3}{n}(-9 x)^{n}=x\left((1-9 x)^{1 / 3}-1\right)$.
Note that this binomial series starts at $n=1$ instead of $n=0$, so the first term is subtracted.
6. (12 pts) Consider the parametric curve $x=2+\sqrt{t}, y=|t-1|, 0 \leq t \leq 4$.
(a) Sketch the curve. Label the coordinates of the initial and terminal points. Indicate the direction of motion as the parameter increases.
(b) Find a Cartesian representation of the curve.

Solution:

(a)

(b) Solving for t in the equation $x=2+\sqrt{t}$ gives $t=(x-2)^{2}$. Substituting into $y=|t-1|$ yields the Cartesian equation $y=\left|(x-2)^{2}-1\right|$ for $2 \leq x \leq 4$.

