On the front of your bluebook, please write your name, lecture number, and instructor name. This exam is worth 100 points and has 6 questions on both sides of this paper.

- Make sure all of your work is in your bluebook. Nothing on this exam sheet will be graded. Please begin each problem on a new page.
- Show all work and simplify your answers. Name any theorem you use. Answers with no justification will receive no points unless the problem explicitly states otherwise.
- Notes, papers, calculators, cell phones, and other electronic devices are not permitted except at the end of the test for scanning and uploading your work to Gradescope.

1. (30 pts) Determine whether the series is convergent or divergent. Be sure to fully justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{9 n+4}}$
(b) $\sum_{n=1}^{\infty} \frac{5^{n}}{(n-1)!}$
(c) $\sum_{n=1}^{\infty} \frac{\ln (1+n)}{\ln \left(9+n^{2}\right)}$
2. (13 pts) The power series $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}} \frac{(x-10)^{n}}{2^{2 n}}$ has a radius of convergence $R=4$. For what values of x (if any) is the series conditionally convergent? absolutely convergent?
3. (14 pts)
(a) Find a power series representation for $\frac{x}{1+x^{3}}$ centered at $a=0$. Simplify your answer.
(b) Use the power series to evaluate $\int_{0}^{0.9} \frac{x}{1+x^{3}} d x$. Express your answer in the form of a series.
4. (23 pts) Consider the function $f(x)=(2 x+1)^{3 / 2}$.
(a) Find the Taylor polynomial $T_{1}(x)$ for $f(x)$ centered at $a=0$.
(b) Use $T_{1}(x)$ to approximate the value of $f\left(\frac{1}{5}\right)$.
(c) Use Taylor's Formula to find an error bound for the approximation found in part (b).

> TURN OVER-More problems on the next page
5. (8 pts) Find the function $g(x)$ which has the power series representation

$$
\sum_{n=1}^{\infty}(-1)^{n}\binom{1 / 3}{n} 9^{n} x^{n+1} \quad \text { for }|x|<\frac{1}{9}
$$

6. (12 pts) Consider the parametric curve $x=2+\sqrt{t}, y=|t-1|, 0 \leq t \leq 4$.
(a) Sketch the curve. Label the coordinates of the initial and terminal points. Indicate the direction of motion as the parameter increases.
(b) Find a Cartesian representation of the curve.

Taylor Series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Taylor's Formula

$$
R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-a)^{n+1}
$$

Frequently Used Maclaurin Series

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} & & R=1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & & R=\infty \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} & & R=\infty \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} & & R=\infty
\end{aligned}
$$

$$
\begin{aligned}
\tan ^{-1} x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} & & R=1 \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} & & R=1 \\
(1+x)^{k} & =\sum_{n=0}^{\infty}\binom{k}{n} x^{n} & & R=1
\end{aligned}
$$

