- 1. (32 pts) The shaded region \mathcal{R}_1 , shown at right, is bounded by $y = \sqrt{x} \ln x$, $\overline{y} = \ln(\sqrt{x})$, and the line $x = e^2$ in the first quadrant. Set up (but <u>do not evaluate</u>) integrals to find the following quantities.
 - (a) The volume of the solid obtained by rotating \mathcal{R}_1 about the line x = -2
 - (b) The volume of the solid with \mathcal{R}_1 as the base and crosssections perpendicular to the *x*-axis that are squares
 - (c) The area of the surface generated by rotating the lower curve about the line y = 6

Now connect the endpoints of the lower curve to form a line segment, $1 \leq x \leq e^2$. Consider the region \mathcal{R}_2 , shown at right, bounded above by the lower curve and bounded below by the line segment. Set up an integral to find

(d) The moment M_y of the region \mathcal{R}_2

y

Solution:

At $x = e^2$, $y = \sqrt{x} \ln x$ has the value 2e and $y = \ln(\sqrt{x})$ has the value 1. Therefore $y = \sqrt{x} \ln x$ is the upper curve and $y = \ln(\sqrt{x})$ is the lower curve.

(a) By the shell method:

$$V = \int_{a}^{b} 2\pi r h \, dx = \int_{1}^{e^{2}} 2\pi (x+2) \left(\sqrt{x} \ln x - \ln\left(\sqrt{x}\right)\right) dx$$

(b) $V = \int_{a}^{b} A(x) \, dx = \int_{1}^{e^{2}} \left(\sqrt{x} \ln x - \ln\left(\sqrt{x}\right)\right)^{2} \, dx$
(c) $S = \int_{a}^{b} 2\pi r \, ds = \int_{a}^{b} 2\pi r \sqrt{1 + (y')^{2}} \, dx$
 $S = \int_{1}^{e^{2}} 2\pi \left(6 - \ln\left(\sqrt{x}\right)\right) \sqrt{1 + \left(\frac{1}{2x}\right)^{2}} \, dx$

(d) The line passing through the points (1,0) and $(e^2,1)$ has the equation $y = \frac{1}{e^2-1}(x-1)$.

$$M_y = \int_a^b \rho x \left(f(x) - g(x) \right) dx = \int_1^{e^2} \rho x \left(\ln \left(\sqrt{x} \right) - \left(\frac{1}{e^2 - 1} (x - 1) \right) \right) dx$$

Exam 2

2. (14 pts) Find the length of the curve $y = \sqrt{4 - x^2}$, $0 \le x \le \frac{1}{2}$, by evaluating an integral. Solution:

$$y = \sqrt{4 - x^2}$$
$$y' = \frac{-2x}{2\sqrt{4 - x^2}} = \frac{-x}{\sqrt{4 - x^2}}$$
$$L = \int_a^b \sqrt{1 + (y')^2} \, dx = \int_0^{1/2} \sqrt{1 + \frac{x^2}{4 - x^2}} \, dx$$
$$= \int_0^{1/2} \sqrt{\frac{4}{4 - x^2}} \, dx = \int_0^{1/2} \frac{2}{\sqrt{4 - x^2}} \, dx$$
$$= 2\sin^{-1}\left(\frac{x}{2}\right) \Big|_0^{1/2} = \boxed{2\sin^{-1}\left(\frac{1}{4}\right)}$$

applying the $\sin^{-1}(x)$ antiderivative formula.

3. (14 pts) Solve the differential equation for y. Simplify your answer.

$$\frac{dy}{dx} = \frac{ye^x}{1+e^x}$$

Solution:

$$\frac{dy}{dx} = \frac{ye^x}{1+e^x}$$
$$\int \frac{dy}{y} = \int \underbrace{\frac{e^x}{1+e^x}}_{\substack{u=1+e^x\\du=e^x dx}} dx$$
$$\ln |y| = \ln (1+e^x) + C$$
$$|y| = e^{\ln(1+e^x)+C}$$
$$|y| = e^C (1+e^x)$$
$$\underbrace{y = \pm e^C (1+e^x)}_{y = A (1+e^x)}$$

4. (10 pts) Let $b_n = \frac{(n+2)!}{2n^2(n!)}$.

- (a) Does b_n converge? If so, what does it converge to?
- (b) Does $\sum_{n=1}^{\infty} b_n$ converge? If so, what does it converge to?

Solution:

(a) $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{(n+2)!}{2n^2(n!)} = \lim_{n \to \infty} \frac{(n+2)(n+1) \cdot \varkappa!}{2n^2(\varkappa!)} = \lim_{n \to \infty} \frac{1}{2} \cdot \frac{n+2}{n} \cdot \frac{n+1}{n} = \frac{1}{2} \cdot 1 \cdot 1 = \boxed{\frac{1}{2}}$ (b) By the Test for Divergence, because $\lim_{n \to \infty} b_n \neq 0$, the series $\sum_{n=1}^{\infty} b_n$ diverges.

- 5. (14 pts) Consider the geometric series $\frac{2}{3} + \frac{2m}{9} + \frac{2m^2}{27} + \frac{2m^3}{81} + \cdots$
 - (a) For what values of m will the series converge?
 - (b) Can the sum of the series equal $\frac{2}{5}$? If so, find the corresponding value of m.

Solution:

- (a) The series $\sum_{n=1}^{\infty} \frac{2}{3} \left(\frac{m}{3}\right)^{n-1}$ has a common ratio of $r = \frac{m}{3}$. The series will converge if $|r| = \left|\frac{m}{3}\right| < 1 \implies |m| < 3.$
- (b) This is a geometric series with $a = \frac{2}{3}$ and $r = \frac{m}{3}$. Use the geometric sum formula to solve for

$$S = \frac{a}{1-r}$$
$$\frac{2}{5} = \frac{\frac{2}{3}}{1-\frac{m}{3}}$$
$$\frac{10}{3} = 2 - \frac{2m}{3}$$
$$m = \boxed{-2}$$

Because |m| < 3, the series converges.

6. (16 pts) Consider the series $\sum_{n=1}^{\infty} a_n$ with $a_n = \pi^{1/n} - \pi^{1/(n+1)}$. Let s_n represent the *n*th partial sum of the series.

- (a) Does a_n converge? If so, what does it converge to?
- (b) Find s_3 . Simplify your answer.
- (c) Find an expression for s_n . Simplify your answer.
- (d) Does the series $\sum_{n=1}^{\infty} a_n$ converge? If so, what does it converge to?

Solution:

 ∞

(a) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\pi^{1/n} - \pi^{1/(n+1)} \right) = \pi^0 - \pi^0 = 0.$ The sequence converges to 0.

(b)
$$s_3 = a_1 + a_2 + a_3 = \left(\pi^1 - \pi^{1/2}\right) + \left(\pi^{1/2} - \pi^{1/3}\right) + \left(\pi^{1/3} - \pi^{1/4}\right) = \left[\pi - \pi^{1/4}\right]$$

(c) This is a telescoping series.

$$s_n = a_1 + a_2 + \dots + a_n$$

= $\left(\pi^1 - \pi^{1/2}\right) + \left(\pi^{1/2} - \pi^{1/3}\right) + \dots + \left(\pi^{1/n} - \pi^{1/(n+1)}\right)$
= $\left[\pi - \pi^{1/(n+1)}\right]$
= $\lim s_n = \lim \left(\pi - \pi^{1/(n+1)}\right) = \pi - \pi^0 = \pi - 1$

(d)
$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(\pi - \pi^{1/(n+1)} \right) = \pi - \pi^0 = \pi - 1$$

The series converges to $\pi - 1$.