1. (32 pts) The shaded region \mathcal{R}_{1}, shown at right, is bounded by
 rant. Set up (but do not evaluate) integrals to find the following quantities.
(a) The volume of the solid obtained by rotating \mathcal{R}_{1} about the line $x=-2$
(b) The volume of the solid with \mathcal{R}_{1} as the base and crosssections perpendicular to the x-axis that are squares

(c) The area of the surface generated by rotating the lower curve about the line $y=6$

Now connect the endpoints of the lower curve to form a line segment, $1 \leq x \leq e^{2}$. Consider the region \mathcal{R}_{2}, shown at right, bounded above by the lower curve and bounded below by the line segment. Set up an integral to find
(d) The moment M_{y} of the region \mathcal{R}_{2}

Solution:

At $x=e^{2}, y=\sqrt{x} \ln x$ has the value $2 e$ and $y=\ln (\sqrt{x})$ has the value 1 . Therefore $y=\sqrt{x} \ln x$ is the upper curve and $y=\ln (\sqrt{x})$ is the lower curve.
(a) By the shell method:

$$
V=\int_{a}^{b} 2 \pi r h d x=\int_{1}^{e^{2}} 2 \pi(x+2)(\sqrt{x} \ln x-\ln (\sqrt{x})) d x
$$

(b) $V=\int_{a}^{b} A(x) d x=\int_{1}^{e^{2}}(\sqrt{x} \ln x-\ln (\sqrt{x}))^{2} d x$
(c) $S=\int_{a}^{b} 2 \pi r d s=\int_{a}^{b} 2 \pi r \sqrt{1+\left(y^{\prime}\right)^{2}} d x$
$S=\int_{1}^{e^{2}} 2 \pi(6-\ln (\sqrt{x})) \sqrt{1+\left(\frac{1}{2 x}\right)^{2}} d x$
(d) The line passing through the points $(1,0)$ and $\left(e^{2}, 1\right)$ has the equation $y=\frac{1}{e^{2}-1}(x-1)$.

$$
M_{y}=\int_{a}^{b} \rho x(f(x)-g(x)) d x=\int_{1}^{e^{2}} \rho x\left(\ln (\sqrt{x})-\left(\frac{1}{e^{2}-1}(x-1)\right)\right) d x
$$

2. (14 pts) Find the length of the curve $y=\sqrt{4-x^{2}}, 0 \leq x \leq \frac{1}{2}$, by evaluating an integral.

Solution:

$$
\begin{aligned}
y & =\sqrt{4-x^{2}} \\
y^{\prime} & =\frac{-2 x}{2 \sqrt{4-x^{2}}}=\frac{-x}{\sqrt{4-x^{2}}} \\
L & =\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{1 / 2} \sqrt{1+\frac{x^{2}}{4-x^{2}}} d x \\
& =\int_{0}^{1 / 2} \sqrt{\frac{4}{4-x^{2}}} d x=\int_{0}^{1 / 2} \frac{2}{\sqrt{4-x^{2}}} d x \\
& \left.=2 \sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{1 / 2}=2 \sin ^{-1}\left(\frac{1}{4}\right)
\end{aligned}
$$

applying the $\sin ^{-1}(x)$ antiderivative formula.
3. (14 pts) Solve the differential equation for y. Simplify your answer.

$$
\frac{d y}{d x}=\frac{y e^{x}}{1+e^{x}}
$$

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y e^{x}}{1+e^{x}} \\
\int \frac{d y}{y} & =\int \underbrace{\frac{e^{x}}{1+e^{x}} d x}_{\begin{array}{c}
u=1+e^{x} \\
d u=e^{x} d x
\end{array}} \\
\ln |y| & =\ln \left(1+e^{x}\right)+C \\
|y| & =e^{\ln \left(1+e^{x}\right)+C} \\
|y| & =e^{C}\left(1+e^{x}\right) \\
y & = \pm e^{C}\left(1+e^{x}\right) \\
y & =A\left(1+e^{x}\right)
\end{aligned}
$$

4. (10 pts) Let $b_{n}=\frac{(n+2)!}{2 n^{2}(n!)}$.
(a) Does b_{n} converge? If so, what does it converge to?
(b) Does $\sum_{n=1}^{\infty} b_{n}$ converge? If so, what does it converge to?

Solution:

(a) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{(n+2)!}{2 n^{2}(n!)}=\lim _{n \rightarrow \infty} \frac{(n+2)(n+1) \cdot n!}{2 n^{2}(n!)}=\lim _{n \rightarrow \infty} \frac{1}{2} \cdot \frac{n+2}{n} \cdot \frac{n+1}{n}=\frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2}$
(b) By the Test for Divergence, because $\lim _{n \rightarrow \infty} b_{n} \neq 0$, the series $\sum_{n=1}^{\infty} b_{n}$ diverges.
5. (14 pts) Consider the geometric series $\frac{2}{3}+\frac{2 m}{9}+\frac{2 m^{2}}{27}+\frac{2 m^{3}}{81}+\cdots$.
(a) For what values of m will the series converge?
(b) Can the sum of the series equal $\frac{2}{5}$? If so, find the corresponding value of m.

Solution:

(a) The series $\sum_{n=1}^{\infty} \frac{2}{3}\left(\frac{m}{3}\right)^{n-1}$ has a common ratio of $r=\frac{m}{3}$. The series will converge if

$$
|r|=\left|\frac{m}{3}\right|<1 \Longrightarrow|m|<3 .
$$

(b) This is a geometric series with $a=\frac{2}{3}$ and $r=\frac{m}{3}$. Use the geometric sum formula to solve for m.

$$
\begin{aligned}
S & =\frac{a}{1-r} \\
\frac{2}{5} & =\frac{\frac{2}{3}}{1-\frac{m}{3}} \\
\frac{10}{3} & =2-\frac{2 m}{3} \\
m & =-2
\end{aligned}
$$

Because $|m|<3$, the series converges.
6. (16 pts) Consider the series $\sum_{n=1}^{\infty} a_{n}$ with $a_{n}=\pi^{1 / n}-\pi^{1 /(n+1)}$. Let s_{n} represent the nth partial sum of the series.
(a) Does a_{n} converge? If so, what does it converge to?
(b) Find s_{3}. Simplify your answer.
(c) Find an expression for s_{n}. Simplify your answer.
(d) Does the series $\sum_{n=1}^{\infty} a_{n}$ converge? If so, what does it converge to?

Solution:

(a) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\pi^{1 / n}-\pi^{1 /(n+1)}\right)=\pi^{0}-\pi^{0}=0$. The sequence converges to 0 .
(b) $s_{3}=a_{1}+a_{2}+a_{3}=\left(\pi^{1}-\pi^{1 / 2}\right)+\left(\pi^{1 / 2}-\pi^{1 / 5}\right)+\left(\pi^{1 \nmid 3}-\pi^{1 / 4}\right)=\pi-\pi^{1 / 4}$
(c) This is a telescoping series.

$$
\begin{aligned}
s_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
& =\left(\pi^{1}-\pi^{1 / 2}\right)+\left(\pi^{1 \nmid 2}-\pi^{1 / 3}\right)+\cdots+\left(\pi^{1 / n}-\pi^{1 /(n+1)}\right) \\
& =\pi-\pi^{1 /(n+1)}
\end{aligned}
$$

(d) $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\pi-\pi^{1 /(n+1)}\right)=\pi-\pi^{0}=\pi-1$

The series converges to $\pi-1$.

