On the front of your bluebook, please write your name, lecture number, and instructor name. This exam is worth 100 points and has 6 questions on both sides of this paper.

- Make sure all of your work is in your bluebook. Nothing on this exam sheet will be graded. Please begin each problem on a new page.
- Show all work and simplify your answers. Name any theorem you use. Answers with no justification will receive no points unless the problem explicitly states otherwise.
- Notes, papers, calculators, cell phones, and other electronic devices are not permitted except at the end of the test for scanning and uploading your work to Gradescope.

1. (32 pts) The shaded region \mathcal{R}_{1}, shown at right, is bounded by
 rant. Set up (but do not evaluate) integrals to find the following quantities.
(a) The volume of the solid obtained by rotating \mathcal{R}_{1} about the line $x=-2$
(b) The volume of the solid with \mathcal{R}_{1} as the base and crosssections perpendicular to the x-axis that are squares

(c) The area of the surface generated by rotating the lower curve about the line $y=6$

Now connect the endpoints of the lower curve to form a line segment, $1 \leq x \leq e^{2}$. Consider the region \mathcal{R}_{2}, shown at right, bounded above by the lower curve and bounded below by the line segment. Set up an integral to find
(d) The moment M_{y} of the region \mathcal{R}_{2}

2. (14 pts) Find the length of the curve $y=\sqrt{4-x^{2}}, 0 \leq x \leq \frac{1}{2}$, by evaluating an integral.
3. (14 pts) Solve the differential equation for y. Simplify your answer.

$$
\frac{d y}{d x}=\frac{y e^{x}}{1+e^{x}}
$$

TURN OVER-More problems on the next page

4. (10 pts) Let $b_{n}=\frac{(n+2)!}{2 n^{2}(n!)}$.
(a) Does b_{n} converge? If so, what does it converge to?
(b) Does $\sum_{n=1}^{\infty} b_{n}$ converge? If so, what does it converge to?
5. (14 pts) Consider the geometric series $\frac{2}{3}+\frac{2 m}{9}+\frac{2 m^{2}}{27}+\frac{2 m^{3}}{81}+\cdots$.
(a) For what values of m will the series converge?
(b) Can the sum of the series equal $\frac{2}{5}$? If so, find the corresponding value of m.
6. (16 pts) Consider the series $\sum_{n=1}^{\infty} a_{n}$ with $a_{n}=\pi^{1 / n}-\pi^{1 /(n+1)}$. Let s_{n} represent the nth partial sum of the series.
(a) Does a_{n} converge? If so, what does it converge to?
(b) Find s_{3}. Simplify your answer.
(c) Find an expression for s_{n}. Simplify your answer.
(d) Does the series $\sum_{n=1}^{\infty} a_{n}$ converge? If so, what does it converge to?

Trigonometric identities

$$
\begin{aligned}
\sin (2 x) & =2 \sin (x) \cos (x) \\
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
\sin ^{2}(x) & =\frac{1}{2}(1-\cos (2 x)) \\
\cos ^{2}(x) & =\frac{1}{2}(1+\cos (2 x))
\end{aligned}
$$

Inverse Trigonometric Integral Identities

$$
\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}(u / a)+C
$$

$$
\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}(u / a)+C
$$

$$
\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}(u / a)+C
$$

Center of Mass Integrals

$M=\int_{a}^{b} \rho(f(x)-g(x)) d x$
$M_{y}=\int_{a}^{b} \rho x(f(x)-g(x)) d x$
$M_{x}=\int_{a}^{b} \frac{1}{2} \rho\left[(f(x))^{2}-(g(x))^{2}\right] d x$
$\bar{x}=\frac{M_{y}}{M}$ and $\bar{y}=\frac{M_{x}}{M}$

