On the front of your bluebook, please write your name, lecture number, and instructor name. This exam is worth 100 points and has 5 questions on both sides of this paper.

- Make sure all of your work is in your bluebook. Nothing on this exam sheet will be graded. Please begin each problem on a new page.
- Show all work and simplify your answers. Name any theorem you use. Answers with no justification will receive no points unless the problem explicitly states otherwise.
- Notes, papers, calculators, cell phones, and other electronic devices are not permitted except at the end of the test for scanning and uploading your work to Gradescope.

1. (36 pts) Evaluate the integral.
(a) $\int\left(\tan \theta+\frac{1}{\cos \theta}\right)^{2} d \theta$
(b) $\int \frac{11}{(2 x-1)(3 x+4)} d x$
(c) $\int \frac{3 x^{3}+18 x-1}{x^{2}+6} d x$
2. (26 pts) Consider the integral $\int_{0}^{\pi / 2} x \cos (2 x) d x$.
(a) Estimate the integral using the trapezoidal approximation T_{3}. Fully simplify your answer.
(b) Find error estimate $\left|E_{T}\right|$ for the approximation T_{3}. You may leave your answer unsimplified. (Hint: The first derivative of $x \cos (2 x)$ is $\cos (2 x)-2 x \sin (2 x)$.)
(c) Find the exact value of the integral.
3. (16 pts) The shaded region shown below is bounded by $y=x \cos (2 x)$ and $y=x \sin (2 x)$. The region is composed of two smaller regions R_{1} above the x-axis and R_{2} below the x-axis. Set up (but do not evaluate) integrals to find the following quantities.
(a) The area of shaded region R_{1} which lies above the x-axis
(b) The volume of the solid generated by rotating the entire shaded region (both R_{1} and R_{2}) about the line $y=-2$

> TURN OVER—More problems on the next page
4. (12 pts) Determine whether $\int_{1}^{\infty} \frac{e^{-x^{3}}}{\cosh (1)} d x$ is convergent or divergent. Justify your answer.
5. (10 pts) Let $f(x)=\frac{b-a}{(x-a)(x-b)}$ where a and b are constants, $0<a<b$.

Is $\int_{b+1}^{\infty} f(x) d x$ convergent or divergent? If convergent, find the value of the integral.
If divergent, explain why. (Hint: Let $g(x)=\ln |x-b|-\ln |x-a|$. Then $g^{\prime}(x)=f(x)$.)
END OF TEST

Trigonometric identities

$$
\begin{aligned}
\sin (2 x) & =2 \sin (x) \cos (x) \\
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
\sin ^{2}(x) & =\frac{1}{2}(1-\cos (2 x)) \\
\cos ^{2}(x) & =\frac{1}{2}(1+\cos (2 x))
\end{aligned}
$$

Inverse Trigonometric Integral Identities

$$
\begin{aligned}
\int \frac{d u}{\sqrt{a^{2}-u^{2}}} & =\sin ^{-1}(u / a)+C \\
\int \frac{d u}{a^{2}+u^{2}} & =\frac{1}{a} \tan ^{-1}(u / a)+C \\
\int \frac{d u}{u \sqrt{u^{2}-a^{2}}} & =\frac{1}{a} \sec ^{-1}(u / a)+C
\end{aligned}
$$

Error Bounds for Trapezoidal and Midpoint Rules

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

