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APPM 1350
Summer 2022 Exam 1

Section

June 10

Instructions:

e Write your name and section number at the top of each page.

» Show all work and simplify your answers, except where the instructions tell you to leave your answer

unsimplified.

* Name any theorem that you use and explain how it is used.

* Answers with no justification will receive no points unless the problem explicitly states otherwise.

* Notes, your text and other books, calculators, cell phones, and other electronic devices are not permit-

ted, except as needed to upload your work.

* When you have completed the exam, go to the scanning section of the room and upload it to Grade-

scope. Verify that everything has been uploaded correctly and pages have been associated to the correct

problem before you leave the room.

* Turn in your hardcopy exam before you leave the room.

Half / Double Angle Formulas
cos?(#) — sin?(h)

e sin(260) = 2sin(f) cos(h) e c0s(20) = < 1 — 2sin?(h)
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Angle Sum / Difference Formulas

e tan(20) =

(9
e tan

2 tan(0)

1 — tan?(0)

e sin(a=£f) = sin(«a) cos(B) £sin(B) cos(a) e cos(at3) = cos(a) cos(8) Fsin(a) sin(f)

tan(a) £ tan(B)

° tan(a + 6) = 1¥ tan(a) tan(ﬁ)
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1. (16 pts)
(a) Find all solutions to the following equation in [0, 27]:

3tan®(z) — 1 = 0.

Solution:
3tan®(z) —1=0
1
tan®(z) =
an”(x) 3
tan(z) = £
an(r) = E—
V3
oo 57 Twm 11w
TT6 676 6

1
(b) If cos(u) = 1 and sin(u) < 0 find tan(u).

Solution: If cosine is positive and sine is negative then u is in quadrant 4. The right triangle given by
the angle will have side ratios similartox = 1,r =4,andy = —v/16 — 1 = —v15. So

tan(u) = —\/F = —/15.

1
2. (16 pts)The function g(x) is obtained from the function f(z) = — by reflecting across the y-axis,
x
shifting to the right by 2, then shifted down by 1.

(a) Find a formula for the new function g(x) obtained by the transformations of f(x).

(b) Sketch a graph of f and sketch a graph of g on the same axes.

f(x) and g()

Y

Solution:
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3. (18 pts) Evaluate the following limits or show that they do not exist.

.|+ 2
1
@, 36

4x cos(z) — 3sin(z)

b) li
®) 250 5 tan(z)
2
- 6
) lim -zt
r—1— r—1
Solution:
(a) Note that the function is not defined at x = —2. We can write the function as a piecewise-defined
function.
T+ 2
> =2
3r+6
flx) = c+2)
—(x +
—_ < =2
32+6
((Th2 s
> —
3(x+2)
] -@+2
— < =2
\ 3(.58 + 2)
1
= > =2
1
—= < =2
(73 °
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In order for the limit to exist, the one-sided limits must be the same. However,

1 1
li = lim —- =—-
im fle) = lim =3 =—3
1 1
li = 1 — = —

Therefore the limit as z — —2 does not exist.

(b)
S in(z)
. 4dxzcos(z) —3sin(z) . * (4 cos(z) — 375 )
lim = lim
o—0 5 tan(x) z—0 5 tan(x)
= lim —— 4 cos(x) — 3%
x—0 5 tan(z) x
L sin(x)
= :lli% 5 5in(2) cos(x) (4 cos(z) — 3 . >
1
=—-1-(4-3
L1 9)
1
I
(c)
. 2P—xz+6 6 6
lm —~ — =~
z—1-  x—1 ~  (smaller and smaller—)
= —00
. (12 pts) Let g(x) be defined as,
c, r=-—1
g(ac) = .ZU2 —x—2 )
e — ~1
arl 0 v

where c is a yet-to-be-determined constant. Use the definition of continuity to determine the value of
c that makes g(x) continuous on R?

Solution: A function is continuous if lim f(z) = f(a) for all a in the domain of f. A rational
Tr—a
function is continuous everywhere except where it is undefined. Based on the construction of f, this

means f is continuous everywhere except for potentially at x = —1. We must choose the value of ¢ so
that lim1 f(z) = f(—1). In other words:
T—>—

. 2 —x—2
Im — =¢
z——1 x+1
1 -2
i @t DE=2)
rz——1 x+1
lim (x —2) =¢
r——1
—-3=c
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5. (10 pts) Find the derivative of the following function using the limit definition of derivative. (Note:
you will not receive any credit for simply applying a law of differentiation. You must use the limit
definition)

9(z) = Vo +2

Solution: g(z + h) = V& + h + 2. Using the limit definition of derivative:

VT +h+2—z+2

/ :l
g'(z) = lim W
— tm (Vr+h+2—z+2) (\/J:+h+2+\/x+2>
h—0 h VT +h+2+yx+2

r+h+2—(x+2)
= lim
h=0h (Vo +h+2+Vz+2)
lim d
h=0h (Vo +h+2+ Vo +2)
im L
-0z +h+2+Vz+2
1
2vx + 2

6. (a) (18 pts) Compute the derivatives of the following functions using any method you prefer:
i. g(z) = —2'% 4 2v/z3

ii. h(z) = sin(z) cos(x)
1

N -
iii. j(z) = Tz
Solution:

i g(z) = -2+ 223 . We can take the derivative using the power rule:

d(z) = —1002% + 302

ii. Using the product rule we get:

iii. Using the quotient rule:

(14 2)?

1
(b) (10 pts) Let f(z) = — k: where k is some constant.
x —

i. If f(z) passes through the point (2, 1) find the value of k.
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ii. What is the domain of f(x)? (Write your answer in interval notation)

iii. Find the equation of the tangent line to the function f at the point (2, 1).
Solution:

L.

- 1
22k
1
1= ——
4—k
k=3

ii. (—o0, —V3) U (—V3,V3) U(V3,00)

_ (@ =3)(0) — (1)(22)

f/(:E) - (IE2 o 3)2
2
G

f'(2) =4

We have a slope of —4 at the point (2, 1), which gives the line y—1 = —4(z—2). Simplifying
to slope intercept form we get:
y=—-4x+9
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Scratch work

Be sure to label your problems



