1. (43 pts total)
 (a) Evaluate the following integrals:
 \[\int (1 + e^x)^2 dx \quad \text{(9 pts)} \]
 \[\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{1 + \cos(x)} dx \quad \text{(10 pts)} \]
 (b) Evaluate the following limits:
 \[\lim_{x \to -\infty} \tanh(2x) \quad \text{(8 pts)} \]
 \[\lim_{x \to 0} x^2 \cos \left(\frac{1}{\sqrt{x}} \right) \quad \text{(8 pts)} \]
 \[\lim_{x \to 0^-} e^{3/x} \quad \text{(8 pts)} \]

2. (22 pts total) Find the area of the largest rectangle inscribed in a right triangle with leg lengths 3 and 4 if two sides of the rectangle lie along the legs.

3. (40 pts total) The following problems are unrelated.
 (a) (11 pts) Calculate \(y' \) if \(y = \tan(xy) \).
 (b) (13 pts) Find the equation of the tangent line to the curve of the function \(f(x) = (\ln(x))^x \) at the point \((e, 1)\). Write your answer in the form \(y = mx + b \). Use this linearization to estimate \(\ln(3)^3 \).
 (c) (16 pts) Let \(f(x) = \ln(2 + \ln(x)) \). Determine the domain of \(f \) and \(f^{-1} \), and find a formula for \(f^{-1}(x) \).

4. (45 pts total) Let \(g(x) = \int_{-x^3}^{8} e^{t^2} dt \).
 (a) (12 pts) Calculate \(g(-2) \) and \(g'(-2) \).
 (b) (15 pts) Find the intervals on which the graph of \(g(x) \) is concave up/down.
 (c) (10 pts) Demonstrate that \(g \) is one-to-one.
 (d) (8 pts) Calculate \((g^{-1})'(0) \).