1. [35 pts] Consider the function \(f(x) = x^4 - 6x^2 \).

 (a) [2 pts] What is the domain of \(f(x) \)?

 (b) [3 pts] Is \(f(x) \) odd, even or neither? Justify your answer algebraically.

 (c) [3 pts] Find all the \(x \)-intercepts and \(y \)-intercepts of \(f(x) \), if any.

 (d) [2 pts] Find all the asymptotes of \(f(x) \), if any.

 (e) [2 pts] Find \(\lim_{x \to \infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \).

 (f) [2 pts] Find \(f'(x) \). Check your answer very carefully before proceeding.

 (g) [2 pts] Find \(f''(x) \). Check your answer very carefully before proceeding.

 (h) [3 pts] Where is \(f(x) \) increasing and where is \(f(x) \) decreasing? Write your answer using interval notation.

 (i) [3 pts] Find all local extrema of \(f(x) \), if it possesses any.

 (j) [3 pts] Where is \(f(x) \) concave up and where is \(f(x) \) concave down? Write your answer using interval notation.

 (k) [3 pts] Find all inflection points of \(f(x) \), if it possesses any.

 (l) [7 pts] Sketch the graph of \(f(x) \). Label all intercepts, relative extrema (if any) and inflection points (if any).

2. [18 pts] Consider the function \(p(x) = x^3 - 3x + 4 \).

 (a) Write the equation that uses Newton’s method to find the root(s) of \(p(x) \).

 (b) Using your answer to part (a), if \(x_1 = 0 \), find \(x_2 \).

 (c) Suppose \(x_1 \) is chosen such that \(x_2 = -1 \). What is \(x_3 \) in this case? Explain briefly.

3. [15 pts] The following problems are unrelated.

 (a) If \(f(x) = 10 - x^2 \), \(1 \leq x \leq 5 \), evaluate the Riemann sum with \(n = 4 \), taking the sample points to be right endpoints.

 (b) Evaluate \(\int_2^{10} |x - 7| \, dx \) by interpreting it in terms of areas.

 (c) Evaluate \(\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \left(\frac{i}{n} \right)^2 \).

CONTINUED ON THE BACK
4. [12 pts] If 1200 cm2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box. Be sure to show that this is the maximum volume.

5. [20 pts] The following problems are unrelated.

(a) [6 pts] Let $g(x) = \frac{x}{x^2 + 1}$. Noting that $g'(x) = \frac{1 - x^2}{(x^2 + 1)^2}$ and $g''(x) = \frac{2x(x^2 - 3)}{(x^2 + 1)^3}$, use the second derivative test to classify the relative extrema of $g(x)$.

(b) [6 pts] Find the most general antiderivative of $f(w) = \frac{5}{\sqrt{w^2}} + \frac{2}{\sqrt{w^3}}$.

(c) [8 pts] A particle is moving with an acceleration $a(t) = 10 \sin t + 3 \cos t$. When time $t = 0$, the particle’s position is 0 and when $t = 2\pi$ its position is 12. Find its position when $t = 5\pi/2$.

Potentially helpful formulas

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \quad \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2 \]