1. Let \(f(x) = 2 + \frac{2 - 2x}{x^2 - 5x + 4} \)

 (a) [6 pts] What is the domain of \(f \)? Write your answer using interval notation.

 (b) [9 pts] Does \(f \) have any removable discontinuities? Justify your answer using limits.

 (c) [9 pts] Find the asymptotes of \(f \). Justify your answer using limits.

 SOLUTION:

 (a) \(f(x) = 2 + \frac{2 - 2x}{(x-1)(x-4)} \). The denominator vanishes if \(x = 1 \) or \(x = 4 \). Thus the domain of \(f(x) \) is

 \((-\infty, 1) \cup (1, 4) \cup (4, \infty))

 (b) Removable discontinuities can occur at points \(a \) where \(f(x) \) is not defined but the limit of \(f(x) \) as \(x \) approaches \(a \) exists. \(f \) is not defined at \(x = 1 \) and \(x = 4 \) so we consider limits at these points.

 \[
 \lim_{x \to 1} f(x) = \lim_{x \to 1} \left(2 + \frac{2 - 2x}{x^2 - 5x + 4} \right) = \lim_{x \to 1} \left(2 + \frac{2(1-x)}{(x-1)(x-4)} \right) = \lim_{x \to 1} \left(2 + \frac{-2}{x-4} \right) = 2 + \frac{-2}{1-4} = \frac{8}{3} \implies x = 1 \text{ is a removable discontinuity}
 \]

 \[
 \lim_{x \to 4} f(x) = \lim_{x \to 4} \left(2 + \frac{2 - 2x}{x^2 - 5x + 4} \right) = \lim_{x \to 4} \left(2 + \frac{2(1-x)}{(x-1)(x-4)} \right) = \lim_{x \to 4} \left(2 + \frac{-2}{x-4} \right) \rightarrow \text{does not exist} \implies x = 4 \text{ is not a removable discontinuity}
 \]

 (c) Candidates for vertical asymptotes are points where \(f(x) \) is not defined, namely \(x = 1 \) and \(x = 4 \). We have already shown that \(x = 1 \) is a removable discontinuity. Checking \(x = 4 \),

 \[
 \lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \left(2 + \frac{2 - 2x}{x^2 - 5x + 4} \right) = \lim_{x \to 4^+} \left(2 + \frac{2(1-x)}{(x-1)(x-4)} \right) = \lim_{x \to 4^+} \left(2 + \frac{-2}{x-4} \right) \rightarrow 2 + \frac{-2}{0^+} = -\infty \implies x = 4 \text{ is a vertical asymptote}
 \]

 We could also have used the left-hand limit at \(x = 4 \) to show this.

 To check for horizontal asymptotes we need to find the limits at plus and minus infinity.

 \[
 \lim_{x \to \infty} \left(2 + \frac{2 - 2x}{x^2 - 5x + 4} \right) = \lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{2 - 2x}{x^2 - 5x + 4} = 2 + \lim_{x \to \infty} \frac{2 - 2x}{x^2 - 5x + 4} \frac{1}{x^2} = 2 + 0 = 2 \implies y = 2 \text{ is a horizontal asymptote}
 \]

 Similarly,

 \[
 \lim_{x \to -\infty} \left(2 + \frac{2 - 2x}{x^2 - 5x + 4} \right) = \lim_{x \to -\infty} 2 + \lim_{x \to -\infty} \frac{2 - 2x}{x^2 - 5x + 4} = 2 + \lim_{x \to -\infty} \frac{2 - 2x}{x^2 - 5x + 4} \frac{1}{x^2} = 2 + 0 = 2 \implies y = 2 \text{ is a horizontal asymptote}
 \]

 \[\square\]
2. [16 pts] Using the graph of \(f(x) \) in the figure below, compute the following:

\[
\begin{align*}
\text{a. } & \lim_{x \to -2^-} f(x) \\
\text{b. } & \lim_{x \to -2^+} f(x) \\
\text{c. } & \lim_{x \to -2} f(x) \\
\text{d. } & \lim_{x \to 2} f(x) \\
\text{e. } & f(2) \\
\text{f. } & \lim_{x \to 4^-} f(x) \\
\text{g. } & \lim_{x \to 4^+} f(x) \\
\text{h. } & \lim_{x \to 4} f(x)
\end{align*}
\]

\[
\text{Solution:} \\
a. -2 \\
b. 1 \\
c. Does not exist \\
d. -1 \\
e. Not defined \\
f. -\infty \text{ (or does not exist)} \\
g. -3 \\
h. Does not exist
\]

3. (a) [6 pts] What three conditions must be met for a function \(f(x) \) to be continuous at the point \(a \)?

(b) [18 pts] Determine where the following functions are continuous, writing your answer using interval notation.

i. \(f(x) = \cos(\sin(\sqrt{x})) - (x^4 - x^2 + 3) \)

ii. \(f(x) = \frac{|x - 5|}{x - 5} \)

iii. \(f(x) = \begin{cases} \cos 3x & x \neq 0 \\ 1 & x = 0 \end{cases} \)

\[y\]
\[
\begin{array}{c}
-5 \\
-4 \\
-3 \\
-2 \\
-1 \\
1 \\
2 \\
3 \\
4 \\
-4 \\
-2 \\
2 \\
3 \\
4 \\
-2 \\
-1 \\
1 \\
2 \\
3 \\
4 \\
-4 \\
-5
\end{array}
\]

\[x\]

\text{Solution:} \\
(a) 1. \(f(a) \) must be defined.

2. \(\lim_{x \to a} f(x) \) must exist.

3. \(\lim_{x \to a} f(x) = f(a) \)

(b) i. \([0, \infty)\); \(\sqrt{x} \) continuous on \([0, \infty)\), \(\sin x \) and \(\cos x \) continuous on \((-\infty, \infty)\) so \(\cos(\sin(\sqrt{x})) \) is continuous on \([0, \infty)\). \(x^4 - x^2 + 3 \) is a polynomial, continuous on \((-\infty, \infty)\) and thus continuous on \([0, \infty)\). The difference of continuous functions is continuous.

ii. \((-\infty, 5) \cup (5, \infty)\); Jump discontinuity at \(x = 5 \). Note:

\[
f(x) = \begin{cases} \\
\frac{x - 5}{x - 5} & x - 5 > 0 \\
\frac{-\left(x - 5\right)}{x - 5} & x - 5 < 0
\end{cases} = \begin{cases} \\
1 & x > 5 \\
-1 & x < 5
\end{cases}
\]

iii. \((\infty, 0) \cup (0, \infty)\); For \(x \neq 0 \) the function is the ratio of two continuous functions and is therefore continuous.

At \(x = 0 \), \(f \) is defined, \(f(0) = 1 \), but \(\lim_{x \to 0} \frac{\cos 3x}{x} \) does not exist.
4. [10 pts] The following problems are not related.

(a) Is there a value of \(x \) such that \(x^2 - \sqrt{x-1} \) equals 4? Justify your answer.

(b) Evaluate \(\lim_{x \to 0} \left(\frac{\sin 3x}{x} + \frac{6x - 9}{x^3 - 12x + 3} \right) \).

Solution:

(a) Since \(x - 1 \) is continuous on \((-\infty, \infty)\) it is continuous on \([1, \infty)\). \(\sqrt{x} \) is continuous on \([0, \infty)\) implying that \(\sqrt{x-1} \) is continuous on \([1, \infty)\) (composition of continuous function is continuous). Furthermore, \(x^2 \) being a polynomial is continuous on \(\mathbb{R} \) and thus continuous on \([1, \infty)\). Thus, \(f(x) = x^2 - \sqrt{x-1} \), being the difference of two continuous functions, is continuous on \([1, \infty)\). Now \(f(1) = 1^2 - \sqrt{1-1} = 1 \) and \(f(5) = 5^2 - \sqrt{5-1} = 23 \). Since \(f(x) \) is continuous on \([1, 5]\) and \(1 < f(1) < 4 < f(5) = 23 \), the Intermediate Value Theorem guarantees the existence of a number \(c \) in \((1, 5)\) such that \(f(c) = 4 \). So, yes, there is a value of \(x \) such that \(x^2 - \sqrt{x-1} = 4 \).

(b) Note that

\[
\lim_{x \to 0} \frac{6x - 9}{x^3 - 12x + 3} = \frac{0 - 9}{0^3 - 12(0) + 3} = \frac{-9}{3} = -3
\]

Furthermore,

\[
\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{3 \sin 3x}{3x} = 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3(1) = 3
\]

Thus

\[
\lim_{x \to 0} \left(\frac{\sin 3x}{x} + \frac{6x - 9}{x^3 - 12x + 3} \right) = \lim_{x \to 0} \frac{\sin 3x}{x} + \lim_{x \to 0} \frac{6x - 9}{x^3 - 12x + 3} = 3 - 3 = 0
\]

5. Let \(f(x) = \sqrt{x + 2} \). If you need to compute any derivatives, you must use the definition.

(a) [5 pts] Find the average rate of change of \(f \) over the interval \([7, 14]\). Simplify your answer. What geometric property of the graph of \(f(x) \) does this average rate of change represent?

(b) [6 pts] Find the instantaneous rate of change of \(f \) at \(x = 2 \). What geometric property of the graph of \(f(x) \) does this instantaneous rate of change represent?

(c) [6 pts] Find the slope/intercept form of the tangent line to the graph of \(y = f(x) \) at the point \(x = 2 \).

(d) [4 pts] The graph of \(f(x) \) is shown in the figure below. In your bluebook, sketch a graph of \(f'(x) \).

Solution:

(a) Average rate of change \(= \frac{f(14) - f(7)}{14 - 7} = \frac{\sqrt{14} + 2 - \sqrt{7} + 2}{7} = \frac{\sqrt{16} - \sqrt{7}}{7} = \frac{4 - 3}{7} = \frac{1}{7} \)

This is the slope of the secant line to the graph of \(f(x) \) between the points \((7, 3)\) and \((14, 4)\).
(b) Method 1

\[f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{\sqrt{x + 2} - \sqrt{2} + 2}{x - 2} = \lim_{x \to 2} \frac{\sqrt{x + 2} - 2}{x - 2} \left(\frac{\sqrt{x + 2} + 2}{\sqrt{x + 2} + 2} \right) \]

\[= \lim_{x \to 2} \frac{x + 2 - 4}{(x - 2)(\sqrt{x + 2} + 2)} = \lim_{x \to 2} \frac{x - 2}{(x - 2)(\sqrt{x + 2} + 2)} = \lim_{x \to 2} \frac{1}{\sqrt{x + 2} + 2} = \frac{1}{\sqrt{2} + 2} = \frac{1}{4} \]

Method 2

\[f'(2) = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} = \lim_{h \to 0} \frac{\sqrt{2 + h} + 2 - \sqrt{2} + 2}{h} = \lim_{h \to 0} \frac{\sqrt{4 + h} - 2}{h} = \lim_{h \to 0} \frac{4 + h - 2}{h} \left(\frac{\sqrt{4 + h} + 2}{\sqrt{4 + h} + 2} \right) \]

\[= \lim_{h \to 0} \frac{4 + h - 4}{h(\sqrt{4 + h} + 2)} = \lim_{h \to 0} \frac{h}{h(\sqrt{4 + h} + 2)} = \lim_{h \to 0} \frac{1}{\sqrt{4 + h} + 2} = \frac{1}{\sqrt{4} + 2} = \frac{1}{4} \]

This is the slope of the tangent line to the graph of \(f(x) \) at \(x = 2 \).

(c) The slope of the tangent line is \(1/4 \) and the point of tangency is \((2, f(2)) = (2, 2) \). Thus the tangent line has equation \(y - 2 = \frac{1}{4}(x - 2) \implies y = \frac{1}{4}x + \frac{3}{2} \).

(d) Graph of \(f'(x) \).

6. [5 pts] In your bluebook, write **TRUE** if the statement is true and write **FALSE** if the statement is false. No justification required and no partial credit given.

(a) \(\cos 2x = 2 \) has no solutions.

(b) \(f(x) = \sqrt{x^2 + x - 6} \) and \(g(x) = \frac{1}{\sqrt{x^2 + x - 6}} \) have the same domain.

(c) If \(f(-x) = -f(x) \) for all \(x \) in the domain of the function \(f \), then the graph of \(f(x) \) is symmetric with respect to the \(x \)-axis.

(d) If a function has a jump discontinuity at a point \(c \) in its domain, then the function is not differentiable at the point \(c \).

(e) If \(\lim_{x \to 5} f(x) = 0 \) and \(\lim_{x \to 5} g(x) = 0 \), then \(\lim_{x \to 5} \frac{f(x)}{g(x)} \) does not exist.

SOLUTION:

(a) **TRUE** The range of \(\cos x \) is \([-1, 1]\).

(b) **FALSE** First note that \(x^2 + x - 6 = (x + 3)(x - 2) \). Then \(x^2 + x - 6 \leq 0 \) if \(-3 \leq x \leq 2 \). Thus the domain of \(f(x) \) is \((-\infty, -3] \cup [2, \infty)\) and the domain of \(g(x) \) is \((-\infty, -3) \cup (2, \infty)\).

(c) **FALSE** Odd functions are symmetric with respect to the origin.

(d) **TRUE** If a function is not continuous at a point in its domain, then it is not differentiable at that point.

(e) **FALSE** \(\frac{0}{0} \) is indeterminate.