1. (28 points) The following problems are not related.
(a) (10 points) Evaluate the definite integral $\int_{0}^{\pi / 2} \cos (x) \sqrt{1+2 \sin (x)} d x$.
(b) (10 points) Evaluate the definite integral $\int_{-1}^{2}\left|1-x^{2}\right| d x$.
(c) (8 points) Suppose that $f(x)=\int_{3}^{\sqrt{x}} \frac{t^{2}+2}{t-1} d t$. Find $f^{\prime}(4)$.

Solution:

(a) Make the substitution $u=1+2 \sin (x)$, so that $\frac{d u}{2}=\cos (x) d x$ and $u(0)=1, \mathrm{u}(\pi / 2)=3$. Then

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos (x) \sqrt{1+2 \sin (x)} d x & =\frac{1}{2} \int_{1}^{3} \sqrt{u} d u \\
& =\left.\frac{1}{2}\left(\frac{2}{3} u^{3 / 2}\right)\right|_{1} ^{3} \\
& =\frac{1}{3}\left(3^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{1}{3}(3 \sqrt{3}-1)
\end{aligned}
$$

(b) Note that $1-x^{2}=-(x-1)(x+1)$, so $f(x)>0$ on $[-1,1]$ and $f(x)<0$ on $[1,2]$. Then

$$
\begin{aligned}
\int_{-1}^{2}\left|1-x^{2}\right| d x & =\int_{-1}^{1}\left(1-x^{2}\right) d x-\int_{1}^{2}\left(1-x^{2}\right) d x \\
& =\left.\left(x-\frac{1}{3} x^{3}\right)\right|_{-1} ^{1}-\left.\left(x-\frac{1}{3} x^{3}\right)\right|_{1} ^{2} \\
& =\left(\frac{2}{3}+\frac{2}{3}\right)-\left(-\frac{2}{3}-\frac{2}{3}\right) \\
& =\frac{8}{3}
\end{aligned}
$$

(c)

$$
f^{\prime}(4)=\left.\left(\frac{1}{2 \sqrt{x}} \cdot \frac{x+2}{\sqrt{x}-1}\right)\right|_{x=4}=\frac{1}{2 \cdot 2} \cdot \frac{4+2}{2-1}=\frac{3}{2}
$$

2. (24 points) The following problems are not related.
(a) (10 points) Approximate the area of the region bounded by the function $f(x)=2 \cos (x)+2$ and the x-axis on the interval $[-\pi / 2,3 \pi / 2]$ by using four approximating rectangles; take the sample points to be the right endpoints.
(b) (14 points) Evaluate the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left(\frac{i^{3}}{n^{3}}+\frac{2 i}{n}\right)$ using summation formulas, or by evaluating an appropriate definite integral.

Solution:
(a)

$$
\begin{aligned}
\int_{-\pi / 2}^{3 \pi / 2} 2 \cos (x)+2 d x & \approx\left(\frac{3 \pi / 2+\pi / 2}{4}\right)(f(0)+f(\pi / 2)+f(\pi)+f(3 \pi / 2)) \\
& =\frac{\pi}{2}(4+2+0+2) \\
& =4 \pi
\end{aligned}
$$

(b) Using summation formulas, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left(\frac{i^{3}}{n^{3}}+\frac{2 i}{n}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}+\lim _{n \rightarrow \infty} \frac{2}{n^{2}} \sum_{i=1}^{n} i \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left(\frac{n(n+1)}{2}\right)^{2}+2 \lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left(\frac{n(n+1)}{2}\right) \\
& =\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}}\left(\frac{(1)(1+1 / n)}{2}\right)^{2}+2 \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}}\left(\frac{(1)(1+1 / n)}{2}\right) \\
& =\frac{1}{4} \lim _{n \rightarrow \infty}(1+1 / n)^{2}+\lim _{n \rightarrow \infty}(1+1 / n) \\
& =\frac{1}{4}+1 \\
& =\frac{5}{4} .
\end{aligned}
$$

Alternatively, one possible definite integral is given by

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left(\frac{i^{3}}{n^{3}}+\frac{2 i}{n}\right)=\int_{0}^{1}\left(x^{3}+2 x\right) d x=\left.\left(\frac{x^{4}}{4}+x^{2}\right)\right|_{0} ^{1}=\frac{1}{4}+1=\frac{5}{4}
$$

3. (16 points) The following problems are not related.
(a) (6 points) Suppose we want to approximate a solution to the equation $3 x+2-\cos (x)=0$ using Newton's Method. What would the formula for x_{n+1} be? (To get full points for this question, you must provide the explicit formula for x_{n+1} in terms of x_{n}; the generic formula for Newton's Method is not sufficient.)
(b) (10 points) Suppose the acceleration of an object (in $\mathrm{m} / \mathrm{s}^{2}$) at any time t is given by $a(t)=6 t^{2}-4$. Find the velocity $v(t)$ of the object at any time t, if $v(1)=2 \mathrm{~m} / \mathrm{s}$.

Solution:
(a) Letting $f(x)=3 x+2-\cos (x)$, we have that $f^{\prime}(x)=3+\sin (x)$. Then

$$
x_{n+1}=x_{n}-\frac{3 x_{n}+2-\cos \left(x_{n}\right)}{3+\sin \left(x_{n}\right)} .
$$

(b) Since acceleration is the derivative of velocity,

$$
v(t)=\int\left(6 t^{2}-4\right) d t=2 t^{3}-4 t+C .
$$

Using the fact that $v(1)=2$, we have

$$
2=v(1)=2(1)^{3}-4(1)+C \Longrightarrow 2=-2+C \Longrightarrow 4=C .
$$

Hence, $v(t)=2 t^{3}-4 t+4$.
4. (18 points) A farmer wants to fence off a small field in the shape of a right triangle. The hypotenuse of the triangle is along a riverbank, and the farmer will not need fencing there. If the farmer wants the area of the field to be $50 \mathrm{~m}^{2}$, what is the minimum amount of fencing they will need? Justify your answer with calculus techniques, and include appropriate units with your answer.

Solution:

We want to minimize the function $f=x+y$, subject to the constraint $50=\frac{1}{2} x y$. Solving the constraint for y yields

$$
y=\frac{100}{x} .
$$

Plugging this in to the function f gives

$$
f(x)=x+\frac{100}{x} .
$$

We now solve for the critical numbers of f :

$$
0=f^{\prime}(x)=1-\frac{100}{x^{2}} \Longrightarrow x^{2}=100 \Longrightarrow x= \pm 10 \Longrightarrow x=10
$$

Using the second derivative test,

$$
f^{\prime \prime}(10)=\frac{200}{10^{3}}>0
$$

so $x=10$ yields a minimum amount of fencing for the field. Using the equation for y, we see that

$$
y=\frac{100}{10}=10
$$

so $x=y=10$. Hence, the farmer will need at minimum $10+10=20$ meters of fencing for the field.
5. (8 points) Write the expression $\int_{-1}^{2} f(x) d x+\int_{1}^{-1} f(x) d x+\int_{-3}^{1} f(x) d x$ as a single integral of the form $\int_{a}^{b} f(x) d x$.
Solution:

$$
\begin{aligned}
\int_{-1}^{2} f(x) d x+\int_{1}^{-1} f(x) d x+\int_{-3}^{1} f(x) d x & =\int_{-1}^{2} f(x) d x-\int_{-1}^{1} f(x) d x+\int_{-3}^{1} f(x) d x \\
& =\int_{1}^{2} f(x) d x+\int_{-3}^{1} f(x) d x \\
& =\int_{-3}^{2} f(x) d x
\end{aligned}
$$

6. (6 points) Suppose the velocity $v(t)$ of a particle is given in the graph below:

Arrange the following quantities in order from smallest to largest:
(i) the total distance the particle travels from $t=0$ to $t=a$
(ii) the displacement of the particle from $t=0$ to $t=a$
(iii) the instantaneous acceleration of the particle at $t=1$.

Note: no justification is required on this problem, but give your answer as a list of the numerals above. For example, $(i),(i i),(i i i)$ would indicate that you believe item (i) is the smallest value, and item (iii) is the largest.
Solution:
(iii), (ii), (i)

