- 1. (28 points) The following problems are not related.
 - (a) (10 points) Evaluate the definite integral $\int_0^{\pi/2} \cos(x) \sqrt{1 + 2\sin(x)} dx$.
 - (b) (10 points) Evaluate the definite integral $\int_{-1}^{2} |1-x^2| dx$.
 - (c) (8 points) Suppose that $f(x) = \int_3^{\sqrt{x}} \frac{t^2 + 2}{t 1} dt$. Find f'(4).
- 2. (24 points) The following problems are not related.
 - (a) (10 points) Approximate the area of the region bounded by the function $f(x) = 2\cos(x) + 2$ and the x-axis on the interval $[-\pi/2, 3\pi/2]$ by using four approximating rectangles; take the sample points to be the right endpoints.
 - (b) (14 points) Evaluate the limit $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n}\left(\frac{i^3}{n^3}+\frac{2i}{n}\right)$ using summation formulas, or by evaluating an appropriate definite integral.
- 3. (16 points) The following problems are not related.
 - (a) (6 points) Suppose we want to approximate a solution to the equation $3x + 2 \cos(x) = 0$ using Newton's Method. What would the formula for x_{n+1} be? (To get full points for this question, you must provide the explicit formula for x_{n+1} in terms of x_n ; the generic formula for Newton's Method is <u>not</u> sufficient.)
 - (b) (10 points) Suppose the acceleration of an object (in m/s²) at any time t is given by $a(t) = 6t^2 4$. Find the velocity v(t) of the object at any time t, if v(1) = 2 m/s.
- 4. (18 points) A farmer wants to fence off a small field in the shape of a right triangle. The hypotenuse of the triangle is along a riverbank, and the farmer will not need fencing there. If the farmer wants the area of the field to be 50 m², what is the minimum amount of fencing they will need? *Justify your answer with calculus techniques, and include appropriate units with your answer*.

5. (8 points) Write the expression $\int_{-1}^{2} f(x) dx + \int_{1}^{-1} f(x) dx + \int_{-3}^{1} f(x) dx$ as a single integral of the form $\int_{a}^{b} f(x) dx$.

6. (6 points) Suppose the velocity v(t) of a particle is given in the graph below:

Arrange the following quantities in order from smallest to largest:

- (i) the total distance the particle travels from t=0 to t=a
- (ii) the displacement of the particle from t = 0 to t = a
- (iii) the instantaneous acceleration of the particle at t=1.

Note: no justification is required on this problem, but give your answer as a list of the numerals above. For example, (i), (ii), (iii) would indicate that you believe item (i) is the smallest value, and item (iii) is the largest.