1. (28 points) The following problems are not related.
(a) (10 points) Evaluate the definite integral $\int_{0}^{\pi / 2} \cos (x) \sqrt{1+2 \sin (x)} d x$.
(b) (10 points) Evaluate the definite integral $\int_{-1}^{2}\left|1-x^{2}\right| d x$.
(c) (8 points) Suppose that $f(x)=\int_{3}^{\sqrt{x}} \frac{t^{2}+2}{t-1} d t$. Find $f^{\prime}(4)$.
2. (24 points) The following problems are not related.
(a) (10 points) Approximate the area of the region bounded by the function $f(x)=2 \cos (x)+2$ and the x-axis on the interval $[-\pi / 2,3 \pi / 2]$ by using four approximating rectangles; take the sample points to be the right endpoints.
(b) (14 points) Evaluate the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left(\frac{i^{3}}{n^{3}}+\frac{2 i}{n}\right)$ using summation formulas, or by evaluating an appropriate definite integral.
3. (16 points) The following problems are not related.
(a) (6 points) Suppose we want to approximate a solution to the equation $3 x+2-\cos (x)=0$ using Newton's Method. What would the formula for x_{n+1} be? (To get full points for this question, you must provide the explicit formula for x_{n+1} in terms of x_{n}; the generic formula for Newton's Method is not sufficient.)
(b) (10 points) Suppose the acceleration of an object (in $\mathrm{m} / \mathrm{s}^{2}$) at any time t is given by $a(t)=6 t^{2}-4$. Find the velocity $v(t)$ of the object at any time t, if $v(1)=2 \mathrm{~m} / \mathrm{s}$.
4. (18 points) A farmer wants to fence off a small field in the shape of a right triangle. The hypotenuse of the triangle is along a riverbank, and the farmer will not need fencing there. If the farmer wants the area of the field to be $50 \mathrm{~m}^{2}$, what is the minimum amount of fencing they will need? Justify your answer with calculus techniques, and include appropriate units with your answer.

5. (8 points) Write the expression $\int_{-1}^{2} f(x) d x+\int_{1}^{-1} f(x) d x+\int_{-3}^{1} f(x) d x$ as a single integral of the form $\int_{a}^{b} f(x) d x$.
6. (6 points) Suppose the velocity $v(t)$ of a particle is given in the graph below:

Arrange the following quantities in order from smallest to largest:
(i) the total distance the particle travels from $t=0$ to $t=a$
(ii) the displacement of the particle from $t=0$ to $t=a$
(iii) the instantaneous acceleration of the particle at $t=1$.

Note: no justification is required on this problem, but give your answer as a list of the numerals above. For example, $(i),(i i),(i i i)$ would indicate that you believe item (i) is the smallest value, and item (iii) is the largest.

