1. (30 points) The following problems are not related.
(a) (10 points) Find the derivative of $g(x)=\sin \left(\frac{x^{2}+x}{3 x-1}\right)$. Do not simplify your answer.
(b) (14 points) Let $f(x)=\sqrt{4-x}$.
i. State the limit definition of the derivative for a function $f(x)$.
ii. Find $f^{\prime}(x)$ by using the definition of the derivative. You must use the limit definition to receive any credit.
(c) $\left(6\right.$ points) If $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h}$, find $f^{\prime}(\pi / 3)$.
2. (20 points) The following problems are not related.
(a) (8 points) The side length h of a square is measured as 3 cm , with a maximum error of 0.1 cm . Use differentials to estimate:
i. the maximum error for the area of the square;
ii. the relative error for the area of the square.
(b) (12 points) You are flying a kite which has a constant height of 4 meters above the ground. The wind is carrying the kite horizontally away from you, and you have to let out string at a rate of 2 meters/minute. What is the horizontal speed of the kite when you have let out 5 meters of string?

3. (16 points) Consider the function $s(x)=-x^{3}+3 x+2$.
(a) Find the critical numbers of $s(x)$.
(b) Use the first derivative test to determine the points where $s(x)$ has a local maximum or local minimum. Give your answer as ordered pairs (x, y).
(c) Find the absolute maximum and minimum values for the function $s(x)$ on the interval $[0,2]$.
4. (18 points) Suppose that y is defined implicitly as a function of x from the equation

$$
\cos (\pi y)=\frac{1}{2} x+y \cos (\pi x) .
$$

(a) Find the derivative $\frac{d y}{d x}$.
(b) Give an equation for the tangent line to this curve at the point where $y=0$.
5. (16 points) Consider the function $f(x)=\frac{1}{x}$ on the interval $[2,4]$.
(a) (8 points) State the Mean Value Theorem and verify that $f(x)$ satisfies the hypotheses on the given interval.
(b) (8 points) Find all numbers c that satisfy the conclusion of the Mean Value Theorem for $f(x)$ on the interval $[2,4]$.

