1. (24 points) The following problems are not related. If a limit does not exist, you must say so. If you use a theorem, clearly state its name and show that its hypotheses are satisfied.
(Reminder: You may not use L'Hôpital's Rule or "Dominance of Powers" in any solutions on this exam.)
(a) $\lim _{x \rightarrow 0} \frac{\sec x}{4 x \cot 2 x}$
(b) $\lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{x}$
(c) $\lim _{x \rightarrow 1} \frac{x-1}{2-\sqrt{5-x^{2}}}$

Solution:

(a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sec x}{4 x \cot 2 x} & =\lim _{x \rightarrow 0} \frac{1 / \cos x}{4 x \cdot \frac{\cos 2 x}{\sin 2 x}} \\
& =\lim _{x \rightarrow 0} \frac{\sin 2 x}{4 x \cos x \cos 2 x} \\
& =\lim _{x \rightarrow 0} \frac{2 \sin x}{4 x \cos 2 x} \\
& =\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)\left(\frac{1}{\cos 2 x}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

(b) Note that

$$
0 \leq \sin ^{2} x \leq 1 \Longrightarrow 0 \leq \frac{\sin ^{2} x}{x} \leq \frac{1}{x}
$$

and

$$
0=\lim _{x \rightarrow \infty} 0=\lim _{x \rightarrow \infty} \frac{1}{x} .
$$

By the Squeeze Theorem, we conclude that

$$
\lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{x}=0
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x-1}{2-\sqrt{5-x^{2}}} & =\lim _{x \rightarrow 1} \frac{(x-1)\left(2+\sqrt{5-x^{2}}\right)}{\left(2-\sqrt{5-x^{2}}\right)\left(2+\sqrt{5-x^{2}}\right)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(2+\sqrt{5-x^{2}}\right)}{x^{2}-1} \\
& =\lim _{x \rightarrow 1} \frac{2+\sqrt{5-x^{2}}}{x+1} \\
& =\frac{2+2}{2} \\
& =2 .
\end{aligned}
$$

2. (21 points) The following problems are unrelated.
(a) Given that $\csc \theta=\sqrt{5}$ and $\pi / 2<\theta<\pi$, find the values of $\tan \theta$ and $\cos (2 \theta)$.
(b) Find all values of x in the interval $[0, \pi]$ that satisfy $\tan x \sec x=4 \sin x$.
(c) A squirrel is up a tree, and it sees a peanut on the ground some distance away. If the straight-line distance between the peanut and the squirrel is 50 ft , and the angle between the straight-line and the tree is $\pi / 6$ radians, how far down the tree and across the ground must the squirrel travel to reach the peanut? Give your answer with appropriate units.

Solution:

(a) Since $\csc \theta=\sqrt{5}$, we know that $\sin \theta=\frac{1}{\sqrt{5}}$. Thus, the angle θ is opposite a side of length 1 in a right triangle with hypotenuse $\sqrt{5}$. The adjacent side to θ has length $\sqrt{(\sqrt{5})^{2}-1^{2}}=2$. Hence, $\tan \theta=-\frac{1}{2}$.
Using a double-angle identity for cosine, we know that

$$
\cos 2 \theta=1-2 \sin ^{2} \theta=1-2(1 / \sqrt{5})^{2}=1-\frac{2}{5}=\frac{3}{5} .
$$

(b) Note that

$$
\begin{aligned}
\tan x \sec x=4 \sin x & \Longrightarrow \frac{\sin x}{\cos ^{2} x}=4 \sin x \\
& \Longrightarrow \sin x-4 \sin x \cos ^{2} x=0 \\
& \Longrightarrow(\sin x)\left(1-4 \cos ^{2} x\right)=0
\end{aligned}
$$

Hence, solutions to the equation are solutions of $\sin x=0$, which are $x=0$ and $x=\pi$, and solutions of $1-4 \cos ^{2} x=0$:

$$
1-4 \cos ^{2} x=0 \Longrightarrow \pm \frac{1}{2} \cos x
$$

which has solutions $x=\pi / 3$ and $x=2 \pi / 3$. Therefore, the solutions to the given equation on the interval $[0, \pi]$ are

$$
x=0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi .
$$

(c) The distance down the tree is given by $y=50 \cos (\pi / 6)=25 \sqrt{3}$, and the distance along the ground is $x=50 \sin (\pi / 6)=25$, so the total distance is given by

$$
D=x+y=25(1+\sqrt{3}) .
$$

3. (15 points) Shown below is a graph of $y=f(x)$, which consists of two line segments with a single removable discontinuity.

(a) Find a formula for $f(x)$.
(b) Sketch a graph of $y=|f(x)|+1$. Label the intercepts, if any.
(c) Suppose we use the precise definition of a limit to verify the value of $\lim _{x \rightarrow 5} f(x)$, and we find that if $4<x<6$, then $-\frac{5}{3}<f(x)<-1$. What are the corresponding values of ϵ and δ ? (recall the precise definition of a limit: the limit of $f(x)$ as x approaches a is L if for every number $\epsilon>0$, there is a corresponding $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Solution:

(a)

$$
f(x)= \begin{cases}1-x, & 0 \leq x<3 \\ 2, & x=3 \\ \frac{1}{3} x-3, & 3<x \leq 6\end{cases}
$$

(b)

(c) $\delta=1, \epsilon=\frac{1}{3}$.
4. (20 points) Consider the function $g(x)=\frac{2 x^{2}-12 x+16}{x^{2}-7 x+12}$.
(Reminder: You may not use L'Hôpital's Rule or "Dominance of Powers" in any solutions on this exam.)
(a) Find the domain of $g(x)$. Express your answer in interval notation.
(b) Find and classify all discontinuities of $g(x)$; justify your answers by calculating the appropriate limits.
(c) Find the horizontal asymptotes, if any; justify your answers by calculating the appropriate limits.

Solution:

(a) We can factor the numerator and denominator as

$$
g(x)=\frac{2(x-2)(x-4)}{(x-3)(x-4)},
$$

which shows that $g(x)$ is undefined at $x=3$ and $x=4$. Hence, the domain of $g(x)$ is $(-\infty, 3) \cup(3,4) \cup$ $(4, \infty)$.
(b) Note that we can cancel the $(x-4)$ factor in the numerator and denominator of $g(x)$, so

$$
g(x)=\frac{2(x-2)}{x-3}
$$

for all x except $x=4$. Then

$$
\lim _{x \rightarrow 4} g(x)=\lim _{x \rightarrow 4} \frac{2(x-2)}{x-3}=\frac{2(4-2)}{4-3}=4,
$$

which shows that $x=4$ is a removable discontinuity for $g(x)$.
Also, $x=3$ is an infinite discontinuity (or a vertical asymptote) for $g(x)$ because

$$
\lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3^{+}} \frac{2(x-2)}{x-3}=\underbrace{\frac{2}{\lim _{x \rightarrow 3^{+}}(x-3)}}_{\rightarrow 0^{+}}=\infty
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{2}-12 x+16}{x^{2}-7 x+12} & =\lim _{x \rightarrow \infty} \frac{x^{2}\left(2-12 / x-16 / x^{2}\right)}{x^{2}\left(1-7 / x+12 / x^{2}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{2-12 / x-16 / x^{2}}{1-7 / x+12 / x^{2}} \\
& =\frac{2-0+0}{1-0+0} \\
& =2
\end{aligned}
$$

By a similar argument, $\lim _{x \rightarrow-\infty} g(x)=2$.
5. (10 points) Consider the function

$$
f(x)= \begin{cases}b \cos (\pi x), & x \leq 1 \\ 3-\sqrt{2 x-2}, & x>1\end{cases}
$$

Find the value of b such that $\lim _{x \rightarrow 1} f(x)$ exists. Justify your answer by calculating appropriate limits.
Solution: Note that

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}}(3-\sqrt{2 x-2}) \\
& =3-\sqrt{2(1)-2} \\
& =3,
\end{aligned}
$$

So we need

$$
3=\lim _{x \rightarrow 1^{-}} b \cos (\pi x)=b \cos (\pi)=-b
$$

for $\lim _{x \rightarrow 1} f(x)$ to exist. Hence, choosing $b=-3$ guarantees that the two-sided limit of $f(x)$ at exists, in which case it equals 3 .
6. (10 points) Show that the equation $x-2=\sin x \cos x$ has at least one real solution. Indicate the interval where a solution can be found.
Solution: Let $f(x)=x-2-\sin x \cos x$. Then the given equation has a solution where $f(x)=0$. Note that $f(x)$ is continuous because $\sin x \cos x$ is the product of continuous functions, which is continuous, and $x-2$ is
continuous because it's a polynomial. Then $f(x)$ is given by the difference of two continuous functions, and hence is continuous itself.
Also, $f(0)=-2<0$, and $f(\pi)=\pi-2>0$. Since f is continuous everywhere, in particular on $[0,2]$, the Intermediate Value Theorem guarantees that $f(x)=0$ has a solution in the interval $(0,2)$, and the given equation does as well.

