1. (24 points) The following problems are not related. If a limit does not exist, you must say so. If you use a theorem, clearly state its name and show that its hypotheses are satisfied.
(Reminder: You may not use L'Hôpital's Rule or "Dominance of Powers" in any solutions on this exam.)
(a) $\lim _{x \rightarrow 0} \frac{\sec x}{4 x \cot 2 x}$
(b) $\lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{x}$
(c) $\lim _{x \rightarrow 1} \frac{x-1}{2-\sqrt{5-x^{2}}}$
2. (21 points) The following problems are unrelated.
(a) Given that $\csc \theta=\sqrt{5}$ and $\pi / 2<\theta<\pi$, find the values of $\tan \theta$ and $\cos (2 \theta)$.
(b) Find all values of x in the interval $[0, \pi]$ that satisfy $\tan x \sec x=4 \sin x$.
(c) A squirrel is up a tree, and it sees a peanut on the ground some distance away. If the straight-line distance between the peanut and the squirrel is 50 ft , and the angle between the straight-line and the tree is $\pi / 6$ radians, how far down the tree and across the ground must the squirrel travel to reach the peanut? Give your answer with appropriate units.
3. (15 points) Shown below is a graph of $y=f(x)$, which consists of two line segments with a single removable discontinuity.

(a) Find a formula for $f(x)$.
(b) Sketch a graph of $y=|f(x)|+1$. Label the intercepts, if any.
(c) Suppose we use the precise definition of a limit to verify the value of $\lim _{x \rightarrow 5} f(x)$, and we find that if $4<x<6$, then $-\frac{5}{3}<f(x)<-1$. What are the corresponding values of ϵ and δ ? (recall the precise definition of a limit: the limit of $f(x)$ as x approaches a is L if for every number $\epsilon>0$, there is a corresponding $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
4. (20 points) Consider the function $g(x)=\frac{2 x^{2}-12 x+16}{x^{2}-7 x+12}$.
(Reminder: You may not use L'Hôpital's Rule or "Dominance of Powers" in any solutions on this exam.)
(a) Find the domain of $g(x)$. Express your answer in interval notation.
(b) Find and classify all discontinuities of $g(x)$; justify your answers by calculating the appropriate limits.
(c) Find the horizontal asymptotes, if any; justify your answers by calculating the appropriate limits.
5. (10 points) Consider the function

$$
f(x)= \begin{cases}b \cos (\pi x), & x \leq 1 \\ 3-\sqrt{2 x-2}, & x>1\end{cases}
$$

Find the value of b such that $\lim _{x \rightarrow 1} f(x)$ exists. Justify your answer by calculating appropriate limits.
6. (10 points) Show that the equation $x-2=\sin x \cos x$ has at least one real solution. Indicate the interval where a solution can be found.

