APPM 1345/1350 Final Exam

Spring 2023

1. (44 pts) Evaluate the following expressions. Fully simplify your answers.
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Solution: By FTC-1 and the chain rule:
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Solution: Let v = tan 6, du = sec? 6 df.
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Alternate Solution: Let u = sec 6, du = sec 8 tan 6 df.
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(e) Z In Z + (Write your answer as a single log expression.)
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2. (12 pts) A particle is moving along a straight line. The position function of the particle in meters after
t seconds is given by
3 52

(a) Find the particle’s instantaneous velocity v(¢) at ¢ = 4 seconds.

(b) What is the average value of the acceleration a(t) on the interval [1, 5]?

Solution:

(a)

v(4) =16 — 20 + 6 =2 m/sec|
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(b) Note that a(t) = v'(t), so /a(t) dt =v(t) + C.
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3. (28 pts) Let g(x) = 5 f4m.

(a) What is the domain of the function? Express your answer in interval notation.

Solution: The function is not defined when the denominator equals zero at z = —%, so the domain is

(=00, 1) U (=1,%9)

(b) Find ¢'(z) and simplify.

Solution: By the quotient rule:
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(c) Find the inverse function g~ (x).

Solution: First solve for .
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(d) Evaluate / dx.
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Solution: Let v = 1 + 4x, du = 4dx.
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4. (12 pts) The Shiveluch volcano on the Kamchatka peninsula is currently erupting and forming a lava dome
in the shape of a hemisphere.

(a) When the radius of the dome is 10 meters, it is increasing at a rate of 2 meters/hour. How fast is the

volume of the dome changing? (The volume of a hemisphere is V' = 37r7"3 )

(b) Assume that the volume’s rate of change remains constant. Find the radius when it is increasing at a
rate of 1 meter/hour.

Solution:

(a) Itis given that dr/dt = 2 m/hr when r = 10 m. We wish to find dV//dt.

= 2710”2 = [ 4007 m’r |

(b) Now find r when dr/dt = 1 m/hr.
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5. (28 pts) The following two problems are not related.
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(a) Let f(z) = smm(ac)
i. Find the values of f (—1) and f (1).

ii. Does f(z) have any vertical asymptotes? If so, find them. Justify your answer using limits

Solution:
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ii. The only potential vertical asymptote is at z = 0.
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Because the function does not approach positive or negative infinity at x = 0, it has
‘ no vertical asymptotes ‘

(b) Let h(x) = sinh(ln z).
i. Find A/(x).
ii. Find an equation of the line tangent to the curve y = h(z) at z = 3. Write your fully simplified
answer in slope-intercept form with no hyperbolic functions.

Solution:

i, W(x) =| L cosh(inz)
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6. (12 pts) A sample of the radioactive element Unobtainium decayed by 10% in one day. In hours, how long
did it take for the sample to decay by 3%?

Solution:
Let m(t) = moe*® represent the mass of the radioactive substance. It is given that after 24 hours, m(24) =
0.9my. First find k.

m(24) = 0.9mg = moe!*
0.9 =
In0.9 = In(e?**) = 24k
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24



Now find ¢ when m(t) = 0.97my.

m(t) = 0.97mgy = moe™
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7. (14 pts) Consider the six graphs A, B, C, D, E, and F shown below. No justification is necessary for the
following questions.

Graph A Graph B Graph C
y y y
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(a) Which of the six graphs satisfies all of the following conditions?

* Jim f(z)=-2 « f'(1)=0and f"(1) > 0
* xgn_lzf(:n) = e the line y = 2 — 3 is tangent to f atx = 3

Solution: Graph E

(b) Which of the six graphs is the derivative graph of the function y = r(z) shown below?



Solution: Graph D




