1. (44 pts) Evaluate the following expressions. Fully simplify your answers.
(a) $\lim _{x \rightarrow 0} \frac{\sin (x / 2)}{e^{2 x}-1}$
(b) $\frac{d}{d x} \int_{0}^{x^{2}} e^{t} \cos t d t$
(c) $\frac{d}{d x}\left((\sec x)^{x}\right)$
(d) $\int \frac{\tan \theta}{\cos ^{2} \theta} d \theta$
(e) $\sum_{i=1}^{6} \ln \left(\frac{i+3}{i+2}\right)$ (Write your answer as a single log expression.)
2. (12 pts) A particle is moving along a straight line. The position function of the particle in meters after t seconds is given by

$$
s(t)=\frac{t^{3}}{3}-\frac{5 t^{2}}{2}+6 t, \quad 1 \leq t \leq 5
$$

(a) Find the particle's instantaneous velocity $v(t)$ at $t=4$ seconds.
(b) What is the average value of the acceleration $a(t)$ on the interval $[1,5]$?
3. $(28$ pts $)$ Let $g(x)=\frac{x}{1+4 x}$.
(a) What is the domain of the function? Express your answer in interval notation.
(b) Find $g^{\prime}(x)$ and simplify.
(c) Find the inverse function $g^{-1}(x)$.
(d) Evaluate $\int_{1}^{6} \frac{1}{1+4 x} d x$.
4. (12 pts) The Shiveluch volcano on the Kamchatka peninsula is currently erupting and forming a lava dome in the shape of a hemisphere.
(a) When the radius of the dome is 10 meters, it is increasing at a rate of 2 meters/hour. How fast is the volume of the dome changing? (The volume of a hemisphere is $V=\frac{2}{3} \pi r^{3}$.)
(b) Assume that the volume's rate of change remains constant. Find the radius when it is increasing at a rate of 1 meter/hour.
5. (28 pts) The following two problems are not related.
(a) Let $f(x)=\frac{\sin ^{-1}(x)}{x}$.
i. Find the values of $f(-1)$ and $f(1)$.
ii. Does $f(x)$ have any vertical asymptotes? If so, find them. Justify your answer using limits.
(b) Let $h(x)=\sinh (\ln x)$.
i. Find $h^{\prime}(x)$.
ii. Find an equation of the line tangent to the curve $y=h(x)$ at $x=3$. Write your fully simplified answer in slope-intercept form with no hyperbolic functions.
6. (12 pts) A sample of the radioactive element Unobtainium decayed by 10% in one day. In hours, how long did it take for the sample to decay by 3% ?
7. (14 pts) Consider the six graphs A, B, C, D, E, and F shown below. No justification is necessary for the following questions.

Graph D

Graph E

Graph F

(a) Which of the six graphs satisfies all of the following conditions?

- $\lim _{x \rightarrow-\infty} f(x)=-2$
- $\lim _{x \rightarrow-2} f(x)=\infty$
- $f^{\prime}(1)=0$ and $f^{\prime \prime}(1)>0$
- the line $y=2 x-3$ is tangent to f at $x=3$
(b) Which of the six graphs is the derivative graph of the function $y=r(x)$ shown below?

