1. (30 pts) The following three problems are not related.
(a) Find the derivative of $y=\cos (x \sin x)$. Leave your answer unsimplified.
(b) Find an equation for the line tangent to $y=\left(x^{2}+1\right)\left(2 x^{3}+3\right)$ at $x=1$. Express your answer in point-slope form.
(c) Find $d y / d x$ given

$$
\frac{y}{y^{3}+5}=2 x^{3 / 2}-3
$$

by applying the quotient rule to the left side of the equation. Express your answer in terms of x and y.
2. (18 pts)
(a) State the limit definition of the derivative for a function $f(x)$.
(b) Let $f(x)=3 x^{2}+7$.
i. Use the limit definition to find $f^{\prime}(x)$.
ii. For the given $f(x)$, find all values of c that satisfy the conclusion of the Mean Value Theorem on the interval $[-1,2]$. You may assume that $f(x)$ satisfies the hypotheses of the theorem.
3. (14 pts) Let $g(x)=2+\sqrt[3]{x}$.
(a) Find the linearization of $g(x)$ at $x=1$.
(b) Use the linearization to approximate the value of $g(0.7)$.
(c) Is the approximation an underestimate or overestimate? Be sure to justify your answer.
4. (12 pts) Timmy leaves home at $8 \mathrm{a} . \mathrm{m}$. and walks west toward school at $\frac{3}{2} \mathrm{~m} / \mathrm{sec}$. At the same time, his dog, Lassie, heads south to visit the dog park, trotting at $2 \mathrm{~m} / \mathrm{sec}$. After 8 seconds, how fast is the distance between them changing?
5. (26 pts) Problems 5 a and 5 b are not related.
(a) Let $h(x)=\left(x^{2}-4\right)^{3}$.
i. Find the critical numbers of h.
ii. Use the First Derivative Test to classify each critical number as a local minimum, local maximum, or neither.
(b) The graph of derivative $r^{\prime}(x)$ is shown below.

i. Among the x-coordinates a, b, c, d, e, f, g, and h, enter the coordinate(s) that correspond to each of the following quantities.

$\min r(x)$ at $x=$	$\min r^{\prime}(x)$ at $x=$	$\min r^{\prime \prime}(x)$ at $x=$
$\max r(x)$ at $x=$	$\max r^{\prime}(x)$ at $x=$	$\max r^{\prime \prime}(x)$ at $x=$

ii. At what value(s) of x does the function $r(x)$ have horizontal tangents?
iii. On what interval(s) is the function $r(x)$ concave up or down? Use the given coordinates as endpoints of the intervals.

