1. (24pts) The following parts of this problem are not related.

(a)(12pts) Given the functions \(f(x) = \frac{1}{x^2 - 3} \) and \(g(x) = \sqrt{x + 1} \), find the composition \((f \circ g)(x)\) and state the domain using interval notation.

(b)(12pts) Evaluate the limit: \(\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - x} \). Show all work.

Solution: (a)(12pts) Note that the composition is
\[
(f \circ g)(x) = f(g(x)) = \frac{1}{(\sqrt{x + 1})^2 - 3} = \frac{1}{x + 1 - 3} = \frac{1}{x - 2}
\]
and for \(f(g(x)) \) to be well defined we need \(x \neq 2 \) and the domain of \(g(x) \) is \([-1, \infty)\), so the domain of \(f(g(x)) \) in interval notation is \([-1, 2) \cup (2, \infty)\).

(b)(12pts) Applying the limit directly gives a “0/0” type indeterminate form and factoring yields
\[
\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - x} = \lim_{x \to 1} \frac{(x-1)(x+5)}{x(x-1)} = \lim_{x \to 1} \frac{x+5}{x} = \frac{1+5}{1} = 6.
\]

2. (28pts) Start this problem on a new page. The following parts of this problem are not related.

(a)(12pts) Evaluate the limit: \(\lim_{x \to 4} \frac{\sqrt{6x+1} - 5}{x - 4} \). Show all work.

(b)(12pts) Suppose \(f(x) = \begin{cases}
 x^2 + x, & \text{if } x \neq 0 \\
 \cos(x), & \text{if } x = 0
\end{cases} \). (i)(6pts) Find the limit \(\lim_{x \to 0} f(x) \). (ii)(6pts) Is \(f(x) \) continuous for all real \(x \)? If not, classify the discontinuities of \(f(x) \). Be sure to show that all three conditions of continuity have been satisfied and justify your answer.

(c)(4pts) The function \(f(x) = \frac{3x + 1}{\sqrt{8x^3} + 5} \) has a horizontal asymptote at which choice below? (No justification necessary - Choose only one answer, copy down the entire answer.)

(A) \(y = 0 \) (B) \(y = \frac{3}{2} \) (C) \(y = 0 \) and \(y = 3/2 \) (D) \(y = -3/2 \) and \(y = 3/2 \) (E) None of these

Solution:

(a)(12pts) Multiplying by the conjugate yields:
\[
\lim_{x \to 4} \frac{\sqrt{6x+1} - 5}{x - 4} = \lim_{x \to 4} \frac{(\sqrt{6x+1} - 5)(\sqrt{6x+1} + 5)}{(x - 4)(\sqrt{6x+1} + 5)} = \lim_{x \to 4} \frac{6(x-4)}{(x-4)(\sqrt{6x+1} + 5)} = \frac{6}{10} = \frac{3}{5}.
\]
(b)(i) (6pts) Note that
\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 + x = 0 \quad \text{and} \quad \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 + x = 0 \quad \text{thus} \quad \lim_{x \to 0} f(x) = 0
\]

(b)(ii) (6pts) No, \(f(x) \) is not continuous at \(x = 0 \). For \(x \neq 0 \), we have \(f(x) = x^2 + x \), and recall that polynomial functions are continuous and at \(x = 0 \) we have to check that \(\lim_{x \to 0^-} f(x) = f(0) \), note that
\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 + x = 0^2 + 0 = 0
\]
and so \(f(x) \) is not continuous for all real \(x \) and has a removable discontinuity at \(x = 0 \).

(c) (4pts) Choice (B). Discussion: Note that
\[
\lim_{x \to \infty} \frac{3x + 1}{\sqrt{8x^3} + 5} = \lim_{x \to \infty} \frac{x \cdot (3 + 1/x)}{\sqrt{8} + 5/x^3} = \frac{3\sqrt{8}}{2} \quad \text{and} \quad \lim_{x \to -\infty} \frac{3x + 1}{\sqrt{8x^3} + 5} = \frac{3}{2}
\]
thus we see that \(y = 3/2 \) is the only horizontal asymptote which implies choice (B).

3. (24pts) Start this problem on a new page. The following parts of this problem are not related.

(a) (12pts) Use the Squeeze Theorem to evaluate the following limit: \(\lim_{x \to 0} x^4 \cos \left(\frac{\pi - 4}{x^2} \right) \).

(b) (12pts) Find \(\lim_{x \to 0} \frac{\sin(3x)}{5x} \). Show all work and justify your answer.

Solution:

(a) (12pts) Note that, using that fact that \(x^4 \geq 0 \), we have
\[
-1 \leq \cos \left(\frac{\pi - 4}{x^2} \right) \leq 1 \quad \Rightarrow \quad -x^4 \leq x^4 \cos \left(\frac{\pi - 4}{x^2} \right) \leq x^4 \quad \Rightarrow \quad \lim_{x \to 0^-} -x^4 \leq \lim_{x \to 0} x^4 \cos \left(\frac{\pi - 4}{x^2} \right) \leq \lim_{x \to 0^+} x^4
\]
and since \(\lim_{x \to 0^-} -x^4 = \lim_{x \to 0^+} x^4 = 0 \), by the Squeeze theorem, we have \(\lim_{x \to 0} x^4 \cos \left(\frac{\pi - 4}{x^2} \right) = 0 \).

(b) (12pts) In this case, using the fact that \(\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1 \) we have
\[
\lim_{x \to 0} \frac{\sin(3x)}{5x} = \lim_{x \to 0} \frac{\sin(3x)}{x} \cdot \frac{1}{5} = \lim_{x \to 0} \frac{\sin(3x)}{3x} \cdot \frac{3}{5} = 1 \cdot \frac{3}{5} = \frac{3}{5}
\]

4. (24pts) Start this problem on a new page.

(a) (10pts) Use one-sided limits to find \(\lim_{x \to 3} \frac{|x - 3|}{x^3 - 3x^2} \). Show all work.

(b) (10pts) Suppose \(f(x) = \frac{|x - 3|}{x^3 - 3x^2} \). (i) (5pts) Find the limit \(\lim_{x \to 0} f(x) \). Show all work. (ii) (5pts) Is \(f(x) \) continuous for all real \(x \)? If not, classify the discontinuities of \(f(x) \). Explain.
The function \(g(x) = \begin{cases}
\frac{|x-3|}{x^3 - 3x^2}, & \text{if } x > 2, \\
\frac{\sqrt{6x+1} - 5}{x-4}, & \text{if } x \leq 2,
\end{cases} \)
has a \textit{vertical asymptote} at which choice below?

(No justification necessary - Choose only one answer, copy down the entire answer.)

(A) \(x = 0, x = 3 \) and \(x = 4 \) (B) \(x = 0 \) (C) \(x = 3 \) and \(x = 4 \) (D) \(x = 2 \) (E) None of these

Solution: (a)(10pts) Note that \(x > 3 \Rightarrow |x-3| = x-3 \) and \(x < 3 \Rightarrow |x-3| = -(x-3) \) thus
\[
\lim_{x \to 3^+} \frac{|x-3|}{x^3 - 3x^2} = \lim_{x \to 3^+} \frac{x-3}{x^2(x-3)} = \lim_{x \to 3^+} \frac{1}{x^2} = \frac{1}{9} \quad \text{and} \quad \lim_{x \to 3^-} \frac{|x-3|}{x^3 - 3x^2} = \lim_{x \to 3^-} \frac{-(x-3)}{x^2 \cdot (x-3)} = \lim_{x \to 3^-} \frac{-1}{x^2} = -\frac{1}{9}
\]
thus the two-sided limit at \(x = 3 \) does not exist, that is, \(\lim_{x \to 3} \frac{|x-3|}{x^3 - 3x^2} = \text{d.n.e.} \).

(b)(i)(5pts) Note that if \(x \to 0 \) then \(x \) is very close to 0 so we can assume \(x < 3 \) so \(|x-3| = -(x-3) \) thus
\[
\lim_{x \to 0} \frac{|x-3|}{x^3 - 3x^2} = \lim_{x \to 0} \frac{-(x-3)}{x^2 \cdot (x-3)} = \lim_{x \to 0} \frac{-1}{x^2} = \frac{-∞}{0} = -∞.
\]

(b)(ii)(5pts) No, the function is not defined at \(x = 0 \) and \(x = 3 \) and therefore not continuous for all real \(x \). From the work done in part (a), we see that \(f(x) \) has a \textit{jump discontinuity} at \(x = 3 \) and, from part (b)(i), we see that \(f(x) \) has a \textit{infinite discontinuity} at \(x = 0 \).

(c)(4pts) Choice (E). Discussion: Note that \(y = \frac{|x-3|}{x^3 - 3x^2} = \frac{|x-3|}{x^2(x-3)} \) is has no VAs for any \(x > 2 \) (there is a jump discontinuity at \(x = 3 \)) and \(y = \frac{\sqrt{6x+1} - 5}{x-4} \) is defined for all \(x \leq 2 \) thus the function \(g(x) \) has \textit{no} vertical asymptotes which implies choice (E).