1. (20 pts) Find the requested derivative for each of the following.

(a) Find y' for $y = \sqrt[3]{x} \cos(x)$.

(b) Find $\frac{dy}{dx}$ for $(x + y)^3 = x^3 + y^3$.

(c) Find $\frac{d^2y}{dt^2}$ for $y = \sec(t)$.

(d) Find $f'(1)$ for $f(x) = \frac{x^2 - 4}{x - 3}$.

2. (16 pts) The following problems are unrelated

(a) Use the definition of a derivative to find the derivative of $f(t) = 10 - t^2$.

(b) Find the linearization of $\tan (x - \pi/4)$ at $a = \pi/2$ and use it to approximate the value of $\tan(\pi/5)$.

3. (24 pts) The position of a particle along a straight line is described by the function

$$s(t) = \frac{t}{4} - \frac{1}{2} \sin(t),$$

on the interval $[0, 2\pi]$.

(a) What is the velocity of the object at any time t?

(b) What is the acceleration of the object at any time t?

(c) Find all critical values of $s(t)$ on the interval $(0, 2\pi)$.

(d) Use the second derivative test to classify the local extrema of $s(t)$ on the interval $(0, 2\pi)$.

(e) Find the absolute maximum and minimum values of the velocity on the interval $[0, 2\pi]$.

CONTINUED ON BACK
4. (20 pts) The following problems are unrelated.

(a) (i) State Rolle’s theorem.
(ii) Verify that \(f(x) = x^2 - 2x - 8 \) satisfies the assumptions of Rolle’s theorem on the interval \([-1, 3]\). Then find all values of \(c \) whose existence is guaranteed by Rolle’s theorem on the interval.

(b) Below is a sketch of a function \(g(x) \) on the interval \([a, f]\). Use the values of the \(x \)-coordinates specified to identify the following. No justification is necessary.

(i) Critical numbers of \(g(x) \).
(ii) Locations of the absolute extrema of \(g(x) \).
(iii) Intervals where \(g'(x) \geq 0 \).
(iv) Intervals where \(g''(x) > 0 \).

5. (20 pts) A thin sheet of ice is in the form of a circle and maintains this shape as it melts. If the ice is melting in such a way that the area of the sheet is decreasing at a rate of 0.5 m\(^2\)/sec, at what rate is the radius decreasing when the area of the sheet is 12 m\(^2\)?